1
|
Kovačević T, Nujić K, Cindrić M, Dragojević S, Vinter A, Hozić A, Mesić M. Different chemical proteomic approaches to identify the targets of lapatinib. J Enzyme Inhib Med Chem 2023; 38:2183809. [PMID: 36856014 PMCID: PMC9980154 DOI: 10.1080/14756366.2023.2183809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The process of identifying the protein targets and off-targets of a biologically active compound is of great importance in modern drug discovery. Various chemical proteomics approaches have been established for this purpose. To compare the different approaches, and to understand which method would provide the best results, we have chosen the EGFR inhibitor lapatinib as an example molecule. Lapatinib derivatives were designed using linkers with motifs, including amino (amidation), alkyne (click chemistry) and the diazirine group (photo-affinity). These modified lapatinib analogues were validated for their ability to inhibit EGFR activity in vitro and were shown to pull down purified recombinant EGFR protein. In all of the approaches evaluated here, we identified EGFR as the main protein target from the lysate of immortalised cell line expressing EGFR, thus validating its potential use to identify unknown protein targets. Taken together, the results reported here give insight into the cellular activities of lapatinib.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Milan Mesić
- Selvita Ltd., Zagreb, Croatia,CONTACT Milan Mesić Selvita Ltd., Zagreb, Croatia
| |
Collapse
|
2
|
Sharma C, Donu D, Curry AM, Barton E, Cen Y. Multifunctional activity-based chemical probes for sirtuins. RSC Adv 2023; 13:11771-11781. [PMID: 37063743 PMCID: PMC10103746 DOI: 10.1039/d3ra02133e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
The sirtuin family of NAD+-dependent protein deacylases has gained significant attention during the last two decades, owing to their unique enzymatic activities as well as their critical roles in a broad array of cellular events. Innovative chemical probes are heavily pursued for the functional annotation and pharmacological perturbation of this group of "eraser" enzymes. We have developed several series of activity-based chemical probes (ABPs) to interrogate the functional state of active sirtuins in complex biological samples. They feature a simple Ala-Ala-Lys tripeptide backbone with a thioacyl "warhead", a photoaffinity group (benzophenone or diazirine), and a bioorthogonal group (terminal alkyne or azido) for conjugation to reporters. When applied in a comparative fashion, these probes reveal the changes of active sirtuin contents under different physiological conditions. Additionally, they can also be utilized in a competitive manner for inhibitor discovery. The Nobel-winning "click" conjugation to a fluorophore allows the visualization of the active enzymes, while the covalent adduct to a biotin leads to the affinity capture of the protein of interest. Furthermore, the "clickable" tag enables the easy access to proteolysis targeting chimeras (PROTACs) that effectively degrade human SIRT2 in HEK293 cells, albeit at micromolar concentrations. These small molecule probes offer unprecedented opportunities to investigate the biological functions and physiological relevance of the sirtuin family.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Elizabeth Barton
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
3
|
Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A. Lessons in Organic Fluorescent Probe Discovery. Chembiochem 2021; 22:3109-3139. [PMID: 34062039 PMCID: PMC8595615 DOI: 10.1002/cbic.202100171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Indexed: 02/03/2023]
Abstract
Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - Vladimir A Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1062, USA
| | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| |
Collapse
|
4
|
Zhang Y, Wen J, Liu D, Qiu Z, Zhu Q, Li R, Zhang Y. Demethylenetetrahydroberberine alleviates nonalcoholic fatty liver disease by inhibiting the NLRP3 inflammasome and oxidative stress in mice. Life Sci 2021; 281:119778. [PMID: 34192596 DOI: 10.1016/j.lfs.2021.119778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/08/2021] [Accepted: 06/19/2021] [Indexed: 12/20/2022]
Abstract
AIMS Demethylenetetrahydroberberine (DMTHB) is a novel derivative of berberine and demethyleneberberine. This research explored the pharmacological effects and molecular mechanisms of DMTHB on nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS C57BL/6 mice were induced by a methionine- and choline- deficient (MCD) diet and L02 cells were induced by palmitic acid to establish NAFLD animal and cell models. qPCR and western blotting were used to detect the expression of genes and proteins associated with pharmacological mechanism. A biotin-labeled DMTHB pulldown assay was used to further clarify the pharmacological targets. KEY FINDINGS Our results indicated that DMTHB significantly alleviates NAFLD in mice. Biochemical assays showed that serum alanine aminotransferase, aspartate aminotransferase and hepatic lipids were significantly decreased in MCD-induced NAFLD mice orally administered of DMTHB (50 mg/kg or 150 mg/kg body weight daily) for 30 d. qPCR and ELISA analysis demonstrated that DMTHB reduced the expression of serum proinflammatory cytokines, such as TNF-α, IL-1β and IL-6. Moreover, pull-down assays and compound-centric chemical proteomics illustrated that DMTHB inhibited NOD-like receptor protein 3 (NLRP3) inflammasome signaling. In addition, DMTHB also attenuated oxidative stress and endoplasmic reticulum stress by downregulation CYP2E-1 and ATF-4 expression. Moreover, DMTHB treatment ameliorated the liver fibrosis in MCD-induced NAFLD mice by suppressing the expression of TGF-β1, α-SMA and collagen 1A1. SIGNIFICANCE DMTHB targeted the NLRP3 inflammasome to suppress inflammation and inhibited CYP2E1 to reduce oxidative stress and ER stress. Consequently, DMTHB may have therapeutic benefits in the treatment of NAFLD in the clinic.
Collapse
Affiliation(s)
- Yuanqiang Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Jing Wen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Dongqing Liu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Zhen Qiu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Qianqian Zhu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Mensa-Wilmot K. How Physiologic Targets Can Be Distinguished from Drug-Binding Proteins. Mol Pharmacol 2021; 100:1-6. [PMID: 33941662 DOI: 10.1124/molpharm.120.000186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
In clinical trials, some drugs owe their effectiveness to off-target activity. This and other observations raise a possibility that many studies identifying targets of drugs are incomplete. If off-target proteins are pharmacologically important, it will be worthwhile to identify them early in the development process to gain a better understanding of the molecular basis of drug action. Herein, we outline a multidisciplinary strategy for systematic identification of physiologic targets of drugs in cells. A drug-binding protein whose genetic disruption yields very similar molecular effects as treatment of cells with the drug may be defined as a physiologic target of the drug. For a drug developed with a rational approach, it is desirable to verify experimentally that a protein used for hit optimization in vitro remains the sole polypeptide recognized by the drug in a cell. SIGNIFICANCE STATEMENT: A body of evidence indicates that inactivation of many drug-binding proteins may not cause the pharmacological effects triggered by the drugs. A multidisciplinary cell-based approach can be of great value in identifying the physiologic targets of drugs, including those developed with target-based strategies.
Collapse
Affiliation(s)
- Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
6
|
Song Y, Luo L, Wang K. Off-target identification by chemical proteomics for the understanding of drug side effects. Expert Rev Proteomics 2021; 17:695-697. [PMID: 33404270 DOI: 10.1080/14789450.2020.1873134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yabing Song
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| | - Li Luo
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry ofEducation , Chengdu, P.R. China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| |
Collapse
|
7
|
Wu X, Luo L, Kong R, Song Y, Li Q, Nice EC, Wang K. Recent advances in autophagic machinery: a proteomic perspective. Expert Rev Proteomics 2020; 17:561-579. [PMID: 32772586 DOI: 10.1080/14789450.2020.1808464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Autophagy is an evolutionarily conserved cellular clearance process, by which cytosolic components are delivered to autolysosomes for breakdown and recycling to maintain cellular homeostasis. During the past decades, autophagy has been found to be tightly implicated in various physiological and pathological progresses. Unraveling the regulatory mechanisms of the autophagy process will contribute to the development of emerging autophagy-targeting strategies for the treatment of various diseases. Recently, the rapid development of proteomics approaches has enabled the use of large-scale unbiased strategies to unravel autophagy machinery. AREAS COVERED In this review, we will highlight the recent contributions of proteomics strategies in clarifying the autophagy machinery, with an emphasis on the three different types of autophagy (namely macroautophagy, microautophagy, and chaperone-mediated autophagy). We will also discuss the emerging role of proteomics approaches in investigating the mechanism of the autophagy-based unconventional secretory pathway (secretory autophagy). EXPERT OPINION Proteomics has provided an effective strategy for the comprehensive analysis of the autophagy process, which will broaden our understanding of autophagy machinery, and holds great promise for developing clinical therapies targeting autophagy.
Collapse
Affiliation(s)
- Xingyun Wu
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| | - Li Luo
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education , Chengdu, P.R. China
| | - Ruxin Kong
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| | - Yabing Song
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| | - Qifu Li
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, and Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University , Haikou, P.R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University , Clayton, Australia
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| |
Collapse
|
8
|
Morisaki T, Shigenaga A, Otaka A. Development of a Turn-On Fluorescent Traceable Linker Employing N-Sulfanylethylcoumarinyl Amide for the Enrichment and Visualization of Target Proteins. Chem Pharm Bull (Tokyo) 2020; 68:216-219. [PMID: 32115528 DOI: 10.1248/cpb.c19-00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A turn-on fluorescent traceable linker based on N-sulfanylethylcoumarinyl amide (SECmide) has been developed as an advanced cleavable linker. It was successfully employed for the enrichment and selective visualization of a target protein in cell lysate. The results demonstrated that the SECmide-based traceable linker is potentially applicable to the identification of low molecular weight target proteins, a factor which has been problematic for a previously developed N-sulfanylethylanilide-based traceable linker.
Collapse
Affiliation(s)
- Takuya Morisaki
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
9
|
Shigenaga A. Development of Chemical Biology Tools Focusing on Peptide/Amide Bond Cleavage Reaction. Chem Pharm Bull (Tokyo) 2019; 67:1171-1178. [PMID: 31685746 DOI: 10.1248/cpb.c19-00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptides and proteins are involved in almost all biological events. In this review, three chemical biology tools, which were developed for peptide/protein sciences from a viewpoint of peptide/amide bond cleavage, are overviewed. First, study on an artificial amino acid that enables stimulus-responsive functional control of peptides/proteins is briefly described. Two N-S acyl transfer reaction-based tools, one a linker molecule for facile identification of target proteins of bioactive compounds and the other a reagent for selective labeling of proteins of interest, are then discussed.
Collapse
Affiliation(s)
- Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
10
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Hoque M, Abbassi RH, Froio D, Man J, Johns TG, Stringer BW, Day BW, Pajic M, Kassiou M, Munoz L. Changes in cell morphology guide identification of tubulin as the off-target for protein kinase inhibitors. Pharmacol Res 2018; 134:166-178. [DOI: 10.1016/j.phrs.2018.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
12
|
Abstract
Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.
Collapse
|
13
|
Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer Metastasis Rev 2018; 37:125-145. [PMID: 29392535 DOI: 10.1007/s10555-017-9710-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achievements in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker discovery and provide insights into the challenges faced in their evaluation and validation.
Collapse
|
14
|
Wang K, Zhang T, Lei Y, Li X, Jiang J, Lan J, Liu Y, Chen H, Gao W, Xie N, Chen Q, Zhu X, Liu X, Xie K, Peng Y, Nice EC, Wu M, Huang C, Wei Y. Identification of ANXA2 (annexin A2) as a specific bleomycin target to induce pulmonary fibrosis by impeding TFEB-mediated autophagic flux. Autophagy 2018; 14:269-282. [PMID: 29172997 DOI: 10.1080/15548627.2017.1409405] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bleomycin is a clinically potent anticancer drug used for the treatment of germ-cell tumors, lymphomas and squamous-cell carcinomas. Unfortunately, the therapeutic efficacy of bleomycin is severely hampered by the development of pulmonary fibrosis. However, the mechanisms underlying bleomycin-induced pulmonary fibrosis, particularly the molecular target of bleomycin, remains unknown. Here, using a chemical proteomics approach, we identify ANXA2 (annexin A2) as a direct binding target of bleomycin. The interaction of bleomycin with ANXA2 was corroborated both in vitro and in vivo. Genetic depletion of anxa2 in mice mitigates bleomycin-induced pulmonary fibrosis. We further demonstrate that Glu139 (E139) of ANXA2 is required for bleomycin binding in lung epithelial cells. A CRISPR-Cas9-engineered ANXA2E139A mutation in lung epithelial cells ablates bleomycin binding and activates TFEB (transcription factor EB), a master regulator of macroautophagy/autophagy, resulting in substantial acceleration of autophagic flux. Pharmacological activation of TFEB elevates bleomycin-initiated autophagic flux, inhibits apoptosis and proliferation of epithelial cells, and ameliorates pulmonary fibrosis in bleomycin-treated mice. Notably, we observe lowered TFEB and LC3B levels in human pulmonary fibrosis tissues compared to normal controls, suggesting a critical role of TFEB-mediated autophagy in pulmonary fibrosis. Collectively, our data demonstrate that ANXA2 is a specific bleomycin target, and bleomycin binding with ANXA2 impedes TFEB-induced autophagic flux, leading to induction of pulmonary fibrosis. Our findings provide insight into the mechanisms of bleomycin-induced fibrosis and may facilitate development of optimized bleomycin therapeutics devoid of lung toxicity.
Collapse
Affiliation(s)
- Kui Wang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Tao Zhang
- b The School of Biomedical Sciences , Chengdu Medical College , Chengdu , China
| | - Yunlong Lei
- c Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center , Chongqing Medical University , Chongqing , China
| | - Xuefeng Li
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China.,e Department of Biomedical Sciences , University of North Dakota , Grand Forks , ND , USA
| | - Jingwen Jiang
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Jiang Lan
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yuan Liu
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Haining Chen
- f Department of Gastrointestinal Surgery , West China Hospital, Sichuan University , Chengdu , China
| | - Wei Gao
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Na Xie
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Qiang Chen
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xiaofeng Zhu
- g College of Life Science , Sichuan University , Chengdu , China
| | - Xiang Liu
- h Department of Pathology , Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital , Chengdu , China
| | - Ke Xie
- i Department of Oncology , Sichuan Provincial People's Hospital , Chengdu , China
| | - Yong Peng
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Edouard C Nice
- j Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia
| | - Min Wu
- e Department of Biomedical Sciences , University of North Dakota , Grand Forks , ND , USA
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yuquan Wei
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| |
Collapse
|
15
|
|
16
|
Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, De Rycker M, Torrie LS, Wyatt PG, Wyllie S, Gilbert IH. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol 2017; 15:217-231. [PMID: 28239154 PMCID: PMC5582623 DOI: 10.1038/nrmicro.2016.193] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WHO recognizes human African trypanosomiasis, Chagas disease and the leishmaniases as neglected tropical diseases. These diseases are caused by parasitic trypanosomatids and range in severity from mild and self-curing to near invariably fatal. Public health advances have substantially decreased the effect of these diseases in recent decades but alone will not eliminate them. In this Review, we discuss why new drugs against trypanosomatids are required, approaches that are under investigation to develop new drugs and why the drug discovery pipeline remains essentially unfilled. In addition, we consider the important challenges to drug discovery strategies and the new technologies that can address them. The combination of new drugs, new technologies and public health initiatives is essential for the management, and hopefully eventual elimination, of trypanosomatid diseases from the human population.
Collapse
Affiliation(s)
- Mark C Field
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Alan H Fairlamb
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Paul G Wyatt
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
17
|
De Clercq DJH, Tavernier J, Lievens S, Van Calenbergh S. Chemical Dimerizers in Three-Hybrid Systems for Small Molecule-Target Protein Profiling. ACS Chem Biol 2016; 11:2075-90. [PMID: 27267544 DOI: 10.1021/acschembio.5b00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification of the molecular targets and mechanisms underpinning the beneficial or detrimental effects of small-molecule leads and drugs constitutes a crucial aspect of current drug discovery. Over the last two decades, three-hybrid (3H) systems have progressively taken an important position in the armamentarium of small molecule-target protein profiling technologies. Yet, a prerequisite for successful 3H analysis is the availability of appropriate chemical inducers of dimerization. Herein, we present a comprehensive and critical overview of the chemical dimerizers specifically applied in both yeast and mammalian three-hybrid systems for small molecule-target protein profiling within the broader scope of target deconvolution and drug discovery. Furthermore, examples and alternative suggestions for typical components of chemical dimerizers for 3H systems are discussed. As illustrated, more tools have become available that increase the sensitivity and efficiency of 3H-based screening platforms. Hence, it is anticipated that the great potential of 3H systems will further materialize in important contributions to drug discovery.
Collapse
Affiliation(s)
- Dries J. H. De Clercq
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sam Lievens
- Department
of Medical Protein Research, Vlaams Instituut voor Biotechnologie, 9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Morisaki T, Denda M, Yamamoto J, Tsuji D, Inokuma T, Itoh K, Shigenaga A, Otaka A. An N-sulfanylethylanilide-based traceable linker for enrichment and selective labelling of target proteins. Chem Commun (Camb) 2016; 52:6911-3. [PMID: 27146590 DOI: 10.1039/c6cc01229a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An N-sulfanylethylanilide-based traceable linker, developed to facilitate identification of target proteins of bioactive compounds, was introduced into an alkynylated target protein. Subsequent adsorption onto streptavidin beads allowed it to be treated with a cysteine-fluorophore conjugate in the presence of phosphate. This induced the N-S acyl transfer reaction of the N-sulfanylethylanilide unit. The subsequent native chemical ligation of the fluorophore resulted in cleavage of the linker for target elution and fluorescence labelling of the target, allowing it to be distinguished from non-target proteins.
Collapse
Affiliation(s)
- Takuya Morisaki
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhou L, Wang K, Li Q, Nice EC, Zhang H, Huang C. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives. Expert Rev Proteomics 2016; 13:367-81. [PMID: 26923776 DOI: 10.1586/14789450.2016.1159959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.
Collapse
Affiliation(s)
- Li Zhou
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Kui Wang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Qifu Li
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Edouard C Nice
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| |
Collapse
|
20
|
Zhou L, Li Q, Wang J, Huang C, Nice EC. Oncoproteomics: Trials and tribulations. Proteomics Clin Appl 2015; 10:516-31. [PMID: 26518147 DOI: 10.1002/prca.201500081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/19/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Qifu Li
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Jiandong Wang
- Department of Biomedical; Chengdu Medical College; Chengdu Sichuan Province P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
| | - Edouard C. Nice
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|
21
|
Yamamoto J, Denda M, Maeda N, Kita M, Komiya C, Tanaka T, Nomura W, Tamamura H, Sato Y, Yamauchi A, Shigenaga A, Otaka A. Development of a traceable linker containing a thiol-responsive amino acid for the enrichment and selective labelling of target proteins. Org Biomol Chem 2015; 12:3821-6. [PMID: 24806338 DOI: 10.1039/c4ob00622d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A traceable linker that is potentially applicable to identification of a target protein of bioactive compounds was developed. It enabled not only thiol-induced cleavage of the linker for enrichment of the target protein but also selective labelling to pick out the target from contaminated non-target proteins for facile identification.
Collapse
Affiliation(s)
- Jun Yamamoto
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima 770-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In recent years, chemical biology and chemical genomics have been increasingly applied to the field of microbiology to uncover new potential therapeutics as well as to probe virulence mechanisms in pathogens. The approach offers some clear advantages, as identified compounds (i) can serve as a proof of principle for the applicability of drugs to specific targets; (ii) can serve as conditional effectors to explore the function of their targets in vitro and in vivo; (iii) can be used to modulate gene expression in otherwise genetically intractable organisms; and (iv) can be tailored to a narrow or broad range of bacteria. This review highlights recent examples from the literature to illustrate how the use of small molecules has advanced discovery of novel potential treatments and has been applied to explore biological mechanisms underlying pathogenicity. We also use these examples to discuss practical considerations that are key to establishing a screening or discovery program. Finally, we discuss the advantages and challenges of different approaches and the methods that are emerging to address these challenges.
Collapse
Affiliation(s)
- Rebecca Anthouard
- Laboratory of Genetics & Molecular Biology of Intestinal Pathogens, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Victor J DiRita
- Laboratory of Genetics & Molecular Biology of Intestinal Pathogens, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Yamamoto J, Maeda N, Komiya C, Tanaka T, Denda M, Ebisuno K, Nomura W, Tamamura H, Sato Y, Yamauchi A, Shigenaga A, Otaka A. Development of a fluoride-responsive amide bond cleavage device that is potentially applicable to a traceable linker. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Janero DR. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential. Expert Opin Drug Discov 2014; 9:847-58. [PMID: 24965547 DOI: 10.1517/17460441.2014.925876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Bouvé College of Health Sciences, Center for Drug Discovery, Department of Pharmaceutical Sciences, Health Sciences Entrepreneurs , 360 Huntington Avenue, 116 Mugar Life Sciences Hall, Boston, MA 02115-5000 , USA +1 617 373 2208 ; +1 617 373 7493 ;
| |
Collapse
|
25
|
Bai SY, Dai X, Zhao BX, Miao JY. Discovery of a novel fluorescent HSP90 inhibitor and its anti-lung cancer effect. RSC Adv 2014. [DOI: 10.1039/c4ra01800a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A novel fluorescent HSP90 inhibitor with strong growth inhibitory effects on lung cancer cells was developed.
Collapse
Affiliation(s)
- Su-Yun Bai
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
- School of Basic Medical Sciences
| | - Xi Dai
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100, P.R. China
| | - Jun-Ying Miao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100, P.R. China
| |
Collapse
|
26
|
Abstract
Owing to the absence of antiparasitic vaccines and the constant threat of drug resistance, the development of novel antiparasitic chemotherapies remains of major importance for disease control. A better understanding of drug transport (uptake and efflux), drug metabolism and the identification of drug targets, and mechanisms of drug resistance would facilitate the development of more effective therapies. Here, we focus on malaria and African trypanosomiasis. We review existing drugs and drug development, emphasizing high-throughput genomic and genetic approaches, which hold great promise for elucidating antiparasitic mechanisms. We describe the approaches and technologies that have been influential for each parasite and develop new ideas for future research directions, including mode-of-action studies for drug target deconvolution.
Collapse
Affiliation(s)
- David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manoj T. Duraisingh
- Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 715, Boston, Massachusetts 02115, USA
| |
Collapse
|