1
|
Das S, Chakraborty S. Simultaneous quantitative detection of hematocrit and hemoglobin from whole blood using a multiplexed paper sensor with a smartphone interface. LAB ON A CHIP 2023; 23:318-329. [PMID: 36562505 DOI: 10.1039/d2lc00456a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report a highly accurate single-step label-free testing technology for simultaneous and independent hematocrit (Hct) and hemoglobin (Hb) level detection from a drop of whole blood by employing a disposable paper strip sensor interfaced with a portable impedimetric device. The paper strip is fabricated by in situ automated printing of a customized electrode template on the non-glossy side of a commercially available photo paper substrate followed by graphite deposition. The integrated platform device technology additionally includes a compact detection cum readout unit comprising a high precision impedance converter system that combines an on-board frequency generator with an analog-to-digital converter evaluation board, collectively interfaced with a central processor, calibration circuit, and smartphone. Employing a dispensed blood sample volume of 25 μL, the device is shown to have a sensitivity of 92 Ω/Hct and 287 Ω/Hb at an optimal frequency of 57 kHz. The respective linear response regimes appear to be wide enough to cover physiologically relevant limits, with excellent stability and reproducibility. Validation with clinical samples reveals limits of detection of Hct and Hb levels as low as 4.66% and 1.89 g dL-1, respectively, which are beyond the quantitative capability of commonly used affordable point of care test kits. The envisaged paradigm of rapid, robust, highly accurate, energy-efficient, simple, user-friendly, multiplex portable detection, obviating any possible ambiguities in interpretation due to common artefacts of colorimetric detection technologies such as optical interference with the image analytical procedure due to the inherent redness of blood samples and background illumination, renders this ideal for deployment in resource-limited settings.
Collapse
Affiliation(s)
- Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| |
Collapse
|
2
|
Sierra-Agudelo J, Rodriguez-Trujillo R, Samitier J. Microfluidics for the Isolation and Detection of Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:389-412. [PMID: 35761001 DOI: 10.1007/978-3-031-04039-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample. In this context, the development of microfluidic devices for detecting and isolating CTCs offers a wide range of new opportunities due to their excellent properties for cell manipulation and the advantages to integrate and bring different laboratory processes into the microscale improving the sensitivity, portability, reducing cost and time. This chapter explores current and recent microfluidic approaches that have been developed for the analysis and detection of CTCs, which involve cell capture methods based on affinity binding and label-free methods and detection based on electrical, chemical, and optical sensors. All the exposed technologies seek to overcome the limitations of commercial systems for the analysis and isolation of CTCs, as well as to provide extended analysis that will allow the development of novel and more efficient diagnostic tools.
Collapse
Affiliation(s)
- Jessica Sierra-Agudelo
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Romen Rodriguez-Trujillo
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
3
|
Purtscher M, Rothbauer M, Kratz SRA, Bailey A, Lieberzeit P, Ertl P. A microfluidic impedance-based extended infectivity assay: combining retroviral amplification and cytopathic effect monitoring on a single lab-on-a-chip platform. LAB ON A CHIP 2021; 21:1364-1372. [PMID: 33566877 DOI: 10.1039/d0lc01056a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection, quantification and monitoring of virus - host cell interactions are of great importance when evaluating the safety of pharmaceutical products. With the wide usage of viral based vector systems in combination with mammalian cell lines for the production of biopharmaceuticals, the presence of replication competent viral particles needs to be avoided and potential hazards carefully assessed. Consequently, regulatory agencies recommend viral clearance studies using plaque assays or TCID50 assays to evaluate the efficiency of the production process in removing viruses. While plaque assays provide reliable information on the presence of viral contaminations, they are still tedious to perform and can take up to two weeks to finish. To overcome some of these limitations, we have automated, miniaturized and integrated the dual cell culture bioassay into a common lab-on-a-chip platform containing embedded electrical sensor arrays to enrich and detect infectious viruses. Results of our microfluidic single step assay show that a significant reduction in assay time down to 3 to 4 days can be achieved using simultaneous cell-based viral amplification, release and detection of cytopathic effects in a target cell line. We further demonstrate the enhancing effect of continuous fluid flow on infection of PG-4 reporter cells by newly formed and highly active virions by M. dunni cells, thus pointing to the importance of physical relevant viral-cell interactions.
Collapse
Affiliation(s)
- Michaela Purtscher
- University of Applied Sciences FH Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
4
|
Sierra J, Marrugo-Ramírez J, Rodriguez-Trujillo R, Mir M, Samitier J. Sensor-Integrated Microfluidic Approaches for Liquid Biopsies Applications in Early Detection of Cancer. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1317. [PMID: 32121271 PMCID: PMC7085501 DOI: 10.3390/s20051317] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Cancer represents one of the conditions with the most causes of death worldwide. Common methods for its diagnosis are based on tissue biopsies-the extraction of tissue from the primary tumor, which is used for its histological analysis. However, this technique represents a risk for the patient, along with being expensive and time-consuming and so it cannot be frequently used to follow the progress of the disease. Liquid biopsy is a new cancer diagnostic alternative, which allows the analysis of the molecular information of the solid tumors via a body fluid draw. This fluid-based diagnostic method displays relevant advantages, including its minimal invasiveness, lower risk, use as often as required, it can be analyzed with the use of microfluidic-based platforms with low consumption of reagent, and it does not require specialized personnel and expensive equipment for the diagnosis. In recent years, the integration of sensors in microfluidics lab-on-a-chip devices was performed for liquid biopsies applications, granting significant advantages in the separation and detection of circulating tumor nucleic acids (ctNAs), circulating tumor cells (CTCs) and exosomes. The improvements in isolation and detection technologies offer increasingly sensitive and selective equipment's, and the integration in microfluidic devices provides a better characterization and analysis of these biomarkers. These fully integrated systems will facilitate the generation of fully automatized platforms at low-cost for compact cancer diagnosis systems at an early stage and for the prediction and prognosis of cancer treatment through the biomarkers for personalized tumor analysis.
Collapse
Affiliation(s)
- Jessica Sierra
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.S.); (R.R.-T.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
| | - José Marrugo-Ramírez
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
| | - Romen Rodriguez-Trujillo
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.S.); (R.R.-T.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
| | - Mònica Mir
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.S.); (R.R.-T.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.S.); (R.R.-T.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
5
|
Teixeira VS, Barth T, Labitzky V, Schumacher U, Krautschneider W. Electrical Impedance Spectroscopy for Characterization of Prostate PC-3 and DU 145 Cancer Cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6485-6489. [PMID: 31947327 DOI: 10.1109/embc.2019.8856627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The impedance profile of the human PC-3 and DU 145 prostate cancer cells were recorded and compared using Electrical Impedance Spectroscopy. Cells were measured in a special chamber using a four terminal setup to avoid parasitic effects of electrode polarization in low frequencies. Our results show that the two cancer cell lines are readily distinguishable by their impedance spectrum. As PC-3 cells have been shown to be spontaneously metastatic in previous xenograft experiments while DU 145 cells were non-metastatic, Electrical Impedance Spectroscopy has the potential to be developed into a simple diagnostic tool to distinguish metastatic from non-metastatic cells.
Collapse
|
6
|
A Review on Biomaterials for 3D Conductive Scaffolds for Stimulating and Monitoring Cellular Activities. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050961] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the last years, scientific research in biotechnology has been reporting a considerable boost forward due to many advances marked in different technological areas. Researchers working in the field of regenerative medicine, mechanobiology and pharmacology have been constantly looking for non-invasive methods able to track tissue development, monitor biological processes and check effectiveness in treatments. The possibility to control cell cultures and quantify their products represents indeed one of the most promising and exciting hurdles. In this perspective, the use of conductive materials able to map cell activity in a three-dimensional environment represents the most interesting approach. The greatest potential of this strategy relies on the possibility to correlate measurable changes in electrical parameters with specific cell cycle events, without affecting their maturation process and considering a physiological-like setting. Up to now, several conductive materials has been identified and validated as possible solutions in scaffold development, but still few works have stressed the possibility to use conductive scaffolds for non-invasive electrical cell monitoring. In this picture, the main objective of this review was to define the state-of-the-art concerning conductive biomaterials to provide researchers with practical guidelines for developing specific applications addressing cell growth and differentiation monitoring. Therefore, a comprehensive review of all the available conductive biomaterials (polymers, carbon-based, and metals) was given in terms of their main electric characteristics and range of applications.
Collapse
|
7
|
An Y, Jin T, Zhang F, He P. Electric cell-substrate impedance sensing (ECIS) for profiling cytotoxicity of cigarette smoke. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Lim Y, Su CH, Liao YC, Lee SY. Impedimetric analysis on the mass transfer properties of intact and competent E. coli cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:9-16. [PMID: 30341999 DOI: 10.1016/j.bbamem.2018.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Abstract
Competent Escherichia coli cells are commonly used in bacterial transformation owing to its high permeability for bioorganic macromolecules like plasmid DNA. However, the mass transfer property of competent E. coli cell has not fully investigated. In the present study, mass transfer coefficients of competent and intact E. coli cells in deionized water were evaluated by impedimetric analysis of the release of cytoplasmic compounds. Because competent cells have a higher permeability after chemical treatment, the lumped mass transfer coefficient of a competent cell was approximately 6.5 times larger than that of an intact cell at room temperature. Release of cytoplasmic components was accelerated at an elevated temperature of 42 °C, which is the heat shock temperature used during bacterial transformation. At this elevated temperature, assessed lumped mass transfer coefficients of intact and competent E. coli cells were 9.28 × 10-4 min-1 and 97.10 × 10-4 min-1, respectively. Significant increase in the mass transfer coefficient of the competent cell is caused by cytolysis of cells. The double layer capacitances were also assessed from the electrochemical spectra confirming the enhanced ion release from E. coli cells and rupture of the competent cell under prolonged exposure at the elevated temperature. Impedimetric detection of the ion release with analyses using an equivalent circuit model provides a method to evaluate mass transfer properties of biomolecules.
Collapse
Affiliation(s)
- Youngjoon Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chun-Hao Su
- Department of Chemical Engineering, National Taiwan University, No.1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, No.1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan.
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
Stanica L, Gheorghiu M, Stan M, Polonschii C, David S, Bratu D, Dinischiotu A, Supuran CT, Gheorghiu E. Quantitative assessment of specific carbonic anhydrase inhibitors effect on hypoxic cells using electrical impedance assays. J Enzyme Inhib Med Chem 2017; 32:1079-1090. [PMID: 28783982 PMCID: PMC6010035 DOI: 10.1080/14756366.2017.1355306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Carbonic anhydrase IX (CA IX) is an important orchestrator of hypoxic tumour environment, associated with tumour progression, high incidence of metastasis and poor response to therapy. Due to its tumour specificity and involvement in associated pathological processes: tumourigenesis, angiogenesis, inhibiting CA IX enzymatic activity has become a valid therapeutic option. Dynamic cell-based biosensing platforms can complement cell-free and end-point analyses and supports the process of design and selection of potent and selective inhibitors. In this context, we assess the effectiveness of recently emerged CA IX inhibitors (sulphonamides and sulphocoumarins) and their antitumour potential using an electrical impedance spectroscopy biosensing platform. The analysis allows discriminating between the inhibitory capacities of the compounds and their inhibition mechanisms. Microscopy and biochemical assays complemented the analysis and validated impedance findings establishing a powerful biosensing tool for the evaluation of carbonic anhydrase inhibitors potency, effective for the screening and design of anticancer pharmacological agents.
Collapse
Affiliation(s)
- Luciana Stanica
- a International Centre of Biodynamics , Bucharest , Romania.,b Faculty of Biology , University of Bucharest , Bucharest , Romania
| | | | - Miruna Stan
- c Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Bucharest , Bucharest , Romania
| | | | - Sorin David
- a International Centre of Biodynamics , Bucharest , Romania
| | - Dumitru Bratu
- a International Centre of Biodynamics , Bucharest , Romania
| | - Anca Dinischiotu
- c Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Bucharest , Bucharest , Romania
| | - Claudiu T Supuran
- d Neurofarba Department, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| | - Eugen Gheorghiu
- a International Centre of Biodynamics , Bucharest , Romania.,b Faculty of Biology , University of Bucharest , Bucharest , Romania
| |
Collapse
|
10
|
Wang H, Sobahi N, Han A. Impedance spectroscopy-based cell/particle position detection in microfluidic systems. LAB ON A CHIP 2017; 17:1264-1269. [PMID: 28267168 DOI: 10.1039/c6lc01223j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An impedance spectroscopy-based cell/particle position detection method in microfluidic systems is presented. A single pair of non-parallel surface microelectrodes was utilized to detect the transverse positions of particles/cells flowing in a microchannel without the need for a multi-electrode multi-channel impedance detection. This method can be a simple solution for high-throughput and low-cost position detection in microfluidic sorting and separation applications.
Collapse
Affiliation(s)
- H Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - N Sobahi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - A Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA and Center for Remote Healthcare Technology and Systems (CRHTS), Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Imaizumi Y, Goda T, Schaffhauser DF, Okada JI, Matsumoto A, Miyahara Y. Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli. Acta Biomater 2017; 50:502-509. [PMID: 27956364 DOI: 10.1016/j.actbio.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023]
Abstract
The membrane integrity of live cells is routinely evaluated for cytotoxicity induced by chemical or physical stimuli. Recent progress in bioengineering means that high-quality toxicity validation is required. Here, we report a pH-sensitive transistor system developed for the continuous monitoring of ion leakage from cell membranes upon challenge by toxic compounds. Temporal changes in pH were generated with high reproducibility via periodic flushing of HepG2 cells on a gate insulator of a proton-sensitive field-effect transistor with isotonic buffer solutions with/without NH4Cl. The pH transients at the point of NH4Cl addition/withdrawal originated from the free permeation of NH3 across the semi-permeable plasma membranes, and the proton sponge effect produced by the ammonia equilibrium. Irreversible attenuation of the pH transient was observed when the cells were subjected to a membrane-toxic reagent. Experiments and simulations proved that the decrease in the pH transient was proportional to the area of the ion-permeable pores on the damaged plasma membranes. The pH signal was correlated with the degree of hemolysis produced by the model reagents. The pH assay was sensitive to the formation of molecularly sized pores that were otherwise not measurable via detection of the leakage of hemoglobin, because the hydrodynamic radius of hemoglobin was greater than 3.1nm in the hemolysis assay. The pH transient was not disturbed by inherent ion-transporter activity. The ISFET assay was applied to a wide variety of cell types. The system presented here is fast, sensitive, practical and scalable, and will be useful for validating cytotoxins and nanomaterials. STATEMENT OF SIGNIFICANCE The plasma membrane toxicity and hemolysis are widely and routinely evaluated in biomaterials science and biomedical engineering. Despite the recent development of a variety of methods/materials for efficient gene/drug delivery systems to the cytosol, the methodologies for safety validation remain unchanged in many years while leaving some major issues such as sensitivity, accuracy, and fast response. The paper describes a new way of measuring the plasma membrane leakage in real time upon challenge by toxic reagents using a solid-state transistor that is sensitive to proton as the smallest indicator. Our system was reliable and was correlated to the results from hemolysis assay with advanced features in sensitivity, fast response, and wide applicability to chemical species. The downsizing and integration features of semiconductor fabrication technologies may realize cytotoxicity assays at the single-cell level in multi-parallel.
Collapse
Affiliation(s)
- Yuki Imaizumi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan.
| | - Daniel F Schaffhauser
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan
| | - Jun-Ichi Okada
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan.
| |
Collapse
|
12
|
Yao J, Sapkota A, Konno H, Obara H, Sugawara M, Takei M. Noninvasive online measurement of particle size and concentration in liquid–particle mixture by estimating equivalent circuit of electrical double layer. PARTICULATE SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1080/02726351.2015.1089345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Nguyen TA, Yin TI, Reyes D, Urban GA. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem 2013; 85:11068-76. [PMID: 24117341 DOI: 10.1021/ac402761s] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell migration has been recognized as one hallmark of malignant tumor progression. By integrating the method of electrical cell-substrate impedance sensing (ECIS) with the Boyden chamber design, the state-of-the-art techniques provide kinetic information about cell migration and invasion processes in three-dimensional (3D) extracellular matrixes. However, the information related to the initial stage of cell migration with single-cell resolution, which plays a unique role in the metastasis-invasion cascade of cancer, is not yet available. In this paper, we present a microfluidic device integrated with ECIS for investigating single cancer cell migration in 3D matrixes. Using microfluidics techniques without the requirement of physical connections to off-chip pneumatics, the proposed sensor chip can efficiently capture single cells on microelectrode arrays for sequential on-chip 2D or 3D cell culture and impedance measurement. An on-chip single-cell migration assay was successfully demonstrated within several minutes. Migration of single metastatic MDA-MB-231 cells in their initial stage can be monitored in real time; it shows a rapid change in impedance magnitude of approximately 10 Ω/s, whereas no prominent impedance change is observed for less-metastasis MCF-7 cells. The proposed sensor chip, allowing for a rapid and selective detection of the migratory properties of cancer cells at the single-cell level, could be applied as a new tool for cancer research.
Collapse
Affiliation(s)
- Tien Anh Nguyen
- Department of Microsystems Engineering, IMTEK, University of Freiburg , Georges-Koehler Allee 103, 79110 Freiburg, Germany
| | | | | | | |
Collapse
|
14
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|