1
|
Albanese GA, Bucchieri A, Podda J, Tacchino A, Buccelli S, De Momi E, Laffranchi M, Mannella K, Holmes MWR, Zenzeri J, De Michieli L, Brichetto G, Barresi G. Robotic systems for upper-limb rehabilitation in multiple sclerosis: a SWOT analysis and the synergies with virtual and augmented environments. Front Robot AI 2024; 11:1335147. [PMID: 38638271 PMCID: PMC11025362 DOI: 10.3389/frobt.2024.1335147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 04/20/2024] Open
Abstract
The robotics discipline is exploring precise and versatile solutions for upper-limb rehabilitation in Multiple Sclerosis (MS). People with MS can greatly benefit from robotic systems to help combat the complexities of this disease, which can impair the ability to perform activities of daily living (ADLs). In order to present the potential and the limitations of smart mechatronic devices in the mentioned clinical domain, this review is structured to propose a concise SWOT (Strengths, Weaknesses, Opportunities, and Threats) Analysis of robotic rehabilitation in MS. Through the SWOT Analysis, a method mostly adopted in business management, this paper addresses both internal and external factors that can promote or hinder the adoption of upper-limb rehabilitation robots in MS. Subsequently, it discusses how the synergy with another category of interaction technologies - the systems underlying virtual and augmented environments - may empower Strengths, overcome Weaknesses, expand Opportunities, and handle Threats in rehabilitation robotics for MS. The impactful adaptability of these digital settings (extensively used in rehabilitation for MS, even to approach ADL-like tasks in safe simulated contexts) is the main reason for presenting this approach to face the critical issues of the aforementioned SWOT Analysis. This methodological proposal aims at paving the way for devising further synergistic strategies based on the integration of medical robotic devices with other promising technologies to help upper-limb functional recovery in MS.
Collapse
Affiliation(s)
| | - Anna Bucchieri
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Jessica Podda
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Andrea Tacchino
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Stefano Buccelli
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Matteo Laffranchi
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Kailynn Mannella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | | | | | | | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
- AISM Rehabilitation Center Liguria, Italian Multiple Sclerosis Society (AISM), Genoa, Italy
| | - Giacinto Barresi
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
2
|
Li X, Yin J, Li H, Xu G, Huo C, Xie H, Li W, Liu J, Li Z. Effects of Ordered Grasping Movement on Brain Function in the Performance Virtual Reality Task: A Near-Infrared Spectroscopy Study. Front Hum Neurosci 2022; 16:798416. [PMID: 35431845 PMCID: PMC9008886 DOI: 10.3389/fnhum.2022.798416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Virtual reality (VR) grasping exercise training helps patients participate actively in their recovery and is a critical approach to the rehabilitation of hand dysfunction. This study aimed to explore the effects of active participation and VR grasping on brain function combined with the kinematic information obtained during VR exercises. Methods The cerebral oxygenation signals of the prefrontal cortex (LPFC/RPFC), the motor cortex (LMC/RMC), and the occipital cortex (LOC/ROC) were measured by functional near-infrared spectroscopy (fNIRS) in 18 young people during the resting state, grasping movements, and VR grasping movements. The EPPlus plug-in was used to collect the hand motion data during simulated interactive grasping. The wavelet amplitude (WA) of each cerebral cortex and the wavelet phase coherence (WPCO) of each pair of channels were calculated by wavelet analysis. The total difference in acceleration difference of the hand in the VR grasping movements was calculated to acquire kinematic characteristics (KCs). The cortical activation and brain functional connectivity (FC) of each brain region were compared and analyzed, and a significant correlation was found between VR grasping movements and brain region activation. Results Compared with the resting state, the WA values of LPFC, RPFC, LMC, RMC, and ROC increased during the grasping movements and the VR grasping movements, these changes were significant in LPFC (p = 0.0093) and LMC (p = 0.0007). The WA values of LMC (p = 0.0057) in the VR grasping movements were significantly higher than those in the grasping movements. The WPCO of the cerebral cortex increased during grasping exercise compared with the resting state. Nevertheless, the number of significant functional connections during VR grasping decreased significantly, and only the WPCO strength between the LPFC and LMC was enhanced. The increased WA of the LPFC, RPFC, LMC, and RMC during VR grasping movements compared with the resting state showed a significant negative correlation with KCs (p < 0.001). Conclusion The VR grasping movements can improve the activation and FC intensity of the ipsilateral brain region, inhibit the FC of the contralateral brain region, and reduce the quantity of brain resources allocated to the task. Thus, ordered grasping exercises can enhance active participation in rehabilitation and help to improve brain function.
Collapse
Affiliation(s)
- Xiangyang Li
- Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Jiahui Yin
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Huiyuan Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Congcong Huo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hui Xie
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jizhong Liu
- Nanchang Key Laboratory of Medical and Technology Research, Nanchang University, Nanchang, China
- *Correspondence: Jizhong Liu,
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
- Zengyong Li,
| |
Collapse
|
3
|
Yang J, Zhao Z, Du C, Wang W, Peng Q, Qiu J, Wang G. The realization of robotic neurorehabilitation in clinical: use of computational intelligence and future prospects analysis. Expert Rev Med Devices 2020; 17:1311-1322. [PMID: 33252284 DOI: 10.1080/17434440.2020.1852930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Although there is a need for rehabilitation treatment with the increase in the aging population, the shortage of skilled physicians frustrates this necessity. Robotic technology has been advocated as one of the most viable methods with the potential to replace humans in providing physical rehabilitation of patients with neurological impairment. However, because the pioneering robot devices suffer several reservations such as safety and comfort concerns in clinical practice, there is an urgent need to provide upgraded replacements. The rapid development of intelligent computing has attracted the attention of researchers concerning the utilization of computational intelligence algorithms for robots in rehabilitation. Areas covered: This article reviews the state of the art and advances of robotic neurorehabilitation with computational intelligence. We classified advances into two categories: mechanical structures and control methods. Prospective outlooks of rehabilitation robots also have been discussed. Expert opinion: The aggravation of global aging has promoted the application of robotic technology in neurorehabilitation. However, this approach is not mature enough to guarantee the safety of patients. Our critical review summarizes multiple computation algorithms which have been proved to be valuable for better robotic use in clinical settings and guide the possible future advances in this industry.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University , Chongqing, China
| | - Zhiqi Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University , Chongqing, China
| | - Chenzhen Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University , Chongqing, China
| | - Wei Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital , Chongqing, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory , Shenzhen, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University , Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University , Chongqing, China
| |
Collapse
|
4
|
Abstract
An elbow assisting device is presented as based on a cable-driven parallel mechanism with design solutions that are improvements from a previous original design. The new mechanism, ideal for domestic use, both for therapies and exercises, is characterized by low-cost, portable, easy-to-use features that are evaluated through numerical simulations and experimental tests whose results are reported with discussions.
Collapse
|
5
|
Jayasree-Krishnan V, Bethi SR, Kumar S, Jayanthi RKR, Ghosh S, Raghavan P, Kapila V. RehabFork: An Interactive Game-assisted Upper Limb Stroke Rehabilitation System. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5757-5760. [PMID: 33019282 DOI: 10.1109/embc44109.2020.9176168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we present the design and development of a game-assisted stroke rehabilitation system RehabFork that allows a user to train their upper-limb to perform certain functions related to the task of eating. The task of eating is divided into several components: (i) grasping the eating utensils such as a fork and knife; (ii) lifting the eating utensils; (iii) using the eating utensils to cut a piece of food; (iv) transferring the food to the mouth; and (v) chewing the food. The RehabFork supports the user through sub-tasks (i)-(iii). The hardware components of RehabFork consist of an instrumented fork and knife, and a 3D printed pressure pad, that measure and communicate information on user performance to a gaming environment to render an integrated rehabilitation system. The gaming environment consists of an interactive game that utilizes sensory data as well as user information about the severity of their disability and current level of progress to adjust the difficulty levels of the game to maintain user motivation. Information pertaining to the user, including performance data, is stored and can be shared with care providers for ongoing oversight.
Collapse
|
6
|
Abstract
Nowadays, robotics is developing at a much faster pace than ever in the past, both inside and outside industrial environments [...]
Collapse
|
7
|
Lo K, Stephenson M, Lockwood C. The economic cost of robotic rehabilitation for adult stroke patients. ACTA ACUST UNITED AC 2019; 17:520-547. [DOI: 10.11124/jbisrir-2017-003896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Shiraishi R, Sankai Y. Developing Safety Measures for a Wheelchair-Compatible Physical Assistive System with Sit-To-Stand Movement Support. ADVANCED BIOMEDICAL ENGINEERING 2018. [DOI: 10.14326/abe.7.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ryoichiro Shiraishi
- Graduate School of System and Information Engineering, University of Tsukuba
- Japan Society for the Promotion of Science
| | - Yoshiyuki Sankai
- Faculty of Engineering, Information and Systems, and Center for Cybernics Research, University of Tsukuba
| |
Collapse
|
9
|
Oscari F, Oboe R, Daud Albasini OA, Masiero S, Rosati G. Design and Construction of a Bilateral Haptic System for the Remote Assessment of the Stiffness and Range of Motion of the Hand. SENSORS 2016; 16:s16101633. [PMID: 27706085 PMCID: PMC5087421 DOI: 10.3390/s16101633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Abstract
The use of haptic devices in the rehabilitation of impaired limbs has become rather popular, given the proven effectiveness in promoting recovery. In a standard framework, such devices are used in rehabilitation centers, where patients interact with virtual tasks, presented on a screen. To track their sessions, kinematic/dynamic parameters or performance scores are recorded. However, as Internet access is now available at almost every home and in order to reduce the hospitalization time of the patient, the idea of doing rehabilitation at home is gaining wide consent. Medical care programs can be synchronized with the home rehabilitation device; patient data can be sent to the central server that could redirect to the therapist laptop (tele-healthcare). The controversial issue is that the recorded data do not actually represent the clinical conditions of the patients according to the medical assessment scales, forcing them to frequently undergo clinical tests at the hospital. To respond to this demand, we propose the use of a bilateral master/slave haptic system that could allow the clinician, who interacts with the master, to assess remotely and in real time the clinical conditions of the patient that uses the home rehabilitation device as the slave. In this paper, we describe a proof of concept to highlight the main issues of such an application, limited to one degree of freedom, and to the measure of the stiffness and range of motion of the hand.
Collapse
Affiliation(s)
- Fabio Oscari
- Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy.
| | - Roberto Oboe
- Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy.
| | - Omar Andres Daud Albasini
- Center for the Development of Nanoscience and Nanotechnology, Universidad de Santiago de Chile, Av. Lib. Bernardo O'higgins, 3363 Santiago, Chile.
| | - Stefano Masiero
- Department of Neuroscience, Universiy-General Hospital of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Giulio Rosati
- Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy.
| |
Collapse
|
10
|
Wolf SL, Sahu K, Bay RC, Buchanan S, Reiss A, Linder S, Rosenfeldt A, Alberts J. The HAAPI (Home Arm Assistance Progression Initiative) Trial: A Novel Robotics Delivery Approach in Stroke Rehabilitation. Neurorehabil Neural Repair 2015; 29:958-68. [PMID: 25782693 DOI: 10.1177/1545968315575612] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Geographical location, socioeconomic status, and logistics surrounding transportation impede access of poststroke individuals to comprehensive rehabilitative services. Robotic therapy may enhance telerehabilitation by delivering consistent and state-of-the art therapy while allowing remote monitoring and adjusting therapy for underserved populations. The Hand Mentor Pro (HMP) was incorporated within a home exercise program (HEP) to improve upper-extremity (UE) functional capabilities poststroke. OBJECTIVE To determine the efficacy of a home-based telemonitored robotic-assisted therapy as part of a HEP compared with a dose-matched HEP-only intervention among individuals less than 6 months poststroke and characterized as underserved. METHODS In this prospective, single-blinded, multisite, randomized controlled trial, 99 hemiparetic participants with limited access to UE rehabilitation were randomized to either (1) the experimental group, which received combined HEP and HMP for 3 h/d ×5 days ×8 weeks, or (2) the control group, which received HEP only at an identical dosage. Weekly communication between the supervising therapist and participant promoted compliance and progression of the HEP and HMP prescription. The Action Research Arm Test and Wolf Motor Function Test along with the Fugl-Meyer Assessment (UE) were primary and secondary outcome measures, respectively, undertaken before and after the interventions. RESULTS Both groups demonstrated improvement across all UE outcomes. CONCLUSIONS Robotic + HEP and HEP only were both effectively delivered remotely. There was no difference between groups in change in motor function over time. Additional research is necessary to determine the appropriate dosage of HMP and HEP.
Collapse
Affiliation(s)
- Steven L Wolf
- Emory University School of Medicine, Atlanta, GA, USA Atlanta VA Medical Center, Decatur, GA, USA
| | - Komal Sahu
- Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Aimee Reiss
- Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Jay Alberts
- Cleveland Clinic, OH, USA Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
11
|
|
12
|
Changes in Functional Outcomes in Elderly Patients as a Result of Poststroke Rehabilitation Using the NDT-Bobath Method. TOPICS IN GERIATRIC REHABILITATION 2014. [DOI: 10.1097/tgr.0000000000000029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Robotic upper limb rehabilitation after acute stroke by NeReBot: evaluation of treatment costs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:265634. [PMID: 24967345 PMCID: PMC4017845 DOI: 10.1155/2014/265634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/18/2014] [Indexed: 11/18/2022]
Abstract
Stroke is the first cause of disability. Several robotic devices have been developed for stroke rehabilitation. Robot therapy by NeReBot is demonstrated to be an effective tool for the treatment of poststroke paretic upper limbs, able to improve the activities of daily living of stroke survivors when used both as additional treatment and in partial substitution of conventional rehabilitation therapy in the acute and subacute phases poststroke. This study presents the evaluation of the costs related to delivering such therapy, in comparison with conventional rehabilitation treatment. By comparing several NeReBot treatment protocols, made of different combinations of robotic and nonrobotic exercises, we show that robotic technology can be a valuable and economically sustainable aid in the management of poststroke patient rehabilitation.
Collapse
|
14
|
Rosati G, Oscari F, Pacchierotti C, Prattichizzo D. Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field. IEEE TRANSACTIONS ON HAPTICS 2014; 7:251-263. [PMID: 24968386 DOI: 10.1109/toh.2013.2296312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Haptic stimulation can help humans learn perceptual motor skills, but the precise way in which it influences the learning process has not yet been clarified. This study investigates the role of the kinesthetic and cutaneous components of haptic feedback during the learning of a viscous curl field, taking also into account the influence of visual feedback. We present the results of an experiment in which 17 subjects were asked to make reaching movements while grasping a joystick and wearing a pair of cutaneous devices. Each device was able to provide cutaneous contact forces through a moving platform. The subjects received visual feedback about joystick's position. During the experiment, the system delivered a perturbation through (1) full haptic stimulation, (2) kinesthetic stimulation alone, (3) cutaneous stimulation alone, (4) altered visual feedback, or (5) altered visual feedback plus cutaneous stimulation. Conditions 1, 2, and 3 were also tested with the cancellation of the visual feedback of position error. Results indicate that kinesthetic stimuli played a primary role during motor adaptation to the viscous field, which is a fundamental premise to motor learning and rehabilitation. On the other hand, cutaneous stimulation alone appeared not to bring significant direct or adaptation effects, although it helped in reducing direct effects when used in addition to kinesthetic stimulation. The experimental conditions with visual cancellation of position error showed slower adaptation rates, indicating that visual feedback actively contributes to the formation of internal models. However, modest learning effects were detected when the visual information was used to render the viscous field.
Collapse
|
15
|
Simeone S, Savini S, Cohen MZ, Alvaro R, Vellone E. The experience of stroke survivors three months after being discharged home: A phenomenological investigation. Eur J Cardiovasc Nurs 2014; 14:162-9. [PMID: 24491347 DOI: 10.1177/1474515114522886] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Stroke is the leading cause of disability in adults, and has a significant impact on individuals, families, and society. Returning home after a stroke represents a challenging experience for patients who struggle to adapt to their new life conditions. Although many studies have been conducted on stroke survivors, few studies have focused on the lived experience of patients at three months after they came home after rehabilitation. AIMS The aim of this study was to describe the experience of stroke survivors three months after being discharged home from rehabilitation hospitals. METHOD A phenomenological methodology was used to conduct the study. Participants were enrolled from rehabilitation hospitals in the cities of Rome and Naples. Interviews were conducted at the patients' house and data were analysed with a phenomenological approach FINDINGS Fifteen stroke survivors were interviewed (mean age 70 years; 12 males). Five themes emerged from the phenomenological analysis of the interviews and the field notes: deeply changed life, vivid memory of the acute phase of the stroke, slowed lives, relief after recovering from stroke, being a burden for family members. CONCLUSIONS The results of this study give an overview of the experience of stroke survivors three months after being discharged home. From a clinical perspective, health care providers need to provide more interventions to help survivors to cope better with life changes and encourage them to adapt to daily life limitations caused by stroke. Also, health care providers should improve support provided to family members of stroke patients.
Collapse
|
16
|
Rosati G, Rodà A, Avanzini F, Masiero S. On the role of auditory feedback in robot-assisted movement training after stroke: review of the literature. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2013; 2013:586138. [PMID: 24382952 PMCID: PMC3871505 DOI: 10.1155/2013/586138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/09/2013] [Indexed: 01/03/2023]
Abstract
The goal of this paper is to address a topic that is rarely investigated in the literature of technology-assisted motor rehabilitation, that is, the integration of auditory feedback in the rehabilitation device. After a brief introduction on rehabilitation robotics, the main concepts of auditory feedback are presented, together with relevant approaches, techniques, and technologies available in this domain. Current uses of auditory feedback in the context of technology-assisted rehabilitation are then reviewed. In particular, a comparative quantitative analysis over a large corpus of the recent literature suggests that the potential of auditory feedback in rehabilitation systems is currently and largely underexploited. Finally, several scenarios are proposed in which the use of auditory feedback may contribute to overcome some of the main limitations of current rehabilitation systems, in terms of user engagement, development of acute-phase and home rehabilitation devices, learning of more complex motor tasks, and improving activities of daily living.
Collapse
Affiliation(s)
- Giulio Rosati
- Department of Management and Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy
| | - Antonio Rodà
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy
| | - Federico Avanzini
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy
| | - Stefano Masiero
- Department of Medical and Surgical Sciences, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| |
Collapse
|
17
|
Masiero S, Armani M, Ferlini G, Rosati G, Rossi A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabil Neural Repair 2013; 28:377-86. [PMID: 24316679 DOI: 10.1177/1545968313513073] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A recent Cochrane Review showed that early robotic training of the upper limb in stroke survivors can be more effective than other interventions when improving activities of daily living involving the arm function is the aim of therapy. OBJECTIVE We tested for efficacy of the study a protocol which involved the use of the NeReBot therapy in partial substitution of standard upper limb rehabilitation in post-acute stroke patients. METHODS In this dose-matched, randomized controlled clinical trial, 34 hemiparetic participants with movement against gravity in shoulder, elbow, and wrist muscle groups were enrolled within 15 days of the onset of stroke. All participants received a total daily rehabilitation treatment for 120 minutes, 5 days per week for 5 weeks. The control group received standard therapy for the upper limb. The experimental group received standard therapy (65% of exercise time) associated with robotic training (35% of exercise time). Muscle tone (Modified Ashworth Scale), strength (Medical Research Council), and synergism (Fugl-Meyer motor scores) were measured at impairment level, whereas dexterity (Box and Block Test and Frenchay Arm Test) and activities of daily living (Functional Independence Measure) were measured at activity level. All assessments were performed at baseline, at the end of therapy (time T1), at 3 months (time T2), and at 7 months (time T3) after entry. All between-group analyses were tested using nonparametric test with Bonferroni's adjustments for multiple testing. RESULTS No significant between-group differences were found with respect to demographic characteristics, motor, dexterity, and ADLs at baseline, postintervention (T1) and at follow-up (T2 and T3). CONCLUSIONS The robot therapy by NeReBot did not lead to better outcomes compared with conventional inpatient rehabilitation.
Collapse
|
18
|
Zanotto D, Rosati G, Spagnol S, Stegall P, Agrawal SK. Effects of complementary auditory feedback in robot-assisted lower extremity motor adaptation. IEEE Trans Neural Syst Rehabil Eng 2013; 21:775-86. [PMID: 23529102 DOI: 10.1109/tnsre.2013.2242902] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study investigates how complementary auditory feedback may affect short-term gait modifications induced by four training sessions with a robotic exoskeleton. Healthy subjects walked on a treadmill and were instructed to match a modified gait pattern derived from their natural one, while receiving assistance by the robot (kinetic guidance). The main question we wanted to answer is whether the most commonly used combination of feedback (i.e., haptic and visual) could be either enhanced by adding auditory feedback or successfully substituted with a combination of kinetic guidance and auditory feedback. Participants were randomly assigned to one of four groups, all of which received kinetic guidance. The control group received additional visual feedback, while the three experimental groups were each provided with a different modality of auditory feedback. The third experimental group also received the same visual feedback as the control group. Differences among the training modalities in gait kinematics, timing and symmetry were assessed in three post-training sessions.
Collapse
|
19
|
Rosati G, Oscari F, Spagnol S, Avanzini F, Masiero S. Effect of task-related continuous auditory feedback during learning of tracking motion exercises. J Neuroeng Rehabil 2012; 9:79. [PMID: 23046683 PMCID: PMC3554473 DOI: 10.1186/1743-0003-9-79] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller) with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel) yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video), to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel visuomotor perturbation, whereas controller-task-related sound feedback did not. This result was particularly interesting, as the subjects relied more on auditory augmentation of the visualized target motion (which was altered with respect to arm motion by the visuomotor perturbation), rather than on sound feedback provided in the controller space, i.e., information directly related to the effective target motion of their arm. Conclusions Our results indicate that auditory augmentation of visual feedback can be beneficial during the execution of upper limb movement exercises. In particular, we found that continuous task-related information provided through sound, in addition to visual feedback can improve not only performance but also the learning of a novel visuomotor perturbation. However, error-related information provided through sound did not improve performance and negatively affected learning in the presence of the visuomotor perturbation.
Collapse
Affiliation(s)
- Giulio Rosati
- Rehabrobotics Lab, Dept, of Management and Engineering, University of Padua, Via Venezia 1, I-35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
20
|
Hsieh YW, Wu CY, Lin KC, Yao G, Wu KY, Chang YJ. Dose-response relationship of robot-assisted stroke motor rehabilitation: the impact of initial motor status. Stroke 2012; 43:2729-34. [PMID: 22895994 DOI: 10.1161/strokeaha.112.658807] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE The increasing availability of robot-assisted therapy (RT), which provides quantifiable, reproducible, interactive, and intensive practice, holds promise for stroke rehabilitation, but data on its dose-response relation are scanty. This study used 2 different intensities of RT to examine the treatment effects of RT and the effect on outcomes of the severity of initial motor deficits. METHODS Fifty-four patients with stroke were randomized to a 4-week intervention of higher-intensity RT, lower-intensity RT, or control treatment. The primary outcome, the Fugl-Meyer Assessment, was administered at baseline, midterm, and posttreatment. Secondary outcomes included the Medical Research Council scale, the Motor Activity Log, and the physical domains of the Stroke Impact Scale. RESULTS The higher-intensity RT group showed significantly greater improvements on the Fugl-Meyer Assessment than the lower-intensity RT and control treatment groups at midterm (P=0.003 and P=0.02) and at posttreatment (P=0.04 and P=0.02). Within-group gains on the secondary outcomes were significant, but the differences among the 3 groups did not reach significance. Recovery rates of the higher-intensity RT group were higher than those of the lower-intensity RT group, particularly on the Fugl-Meyer Assessment. Scatterplots with curve fitting showed that patients with moderate motor deficits gained more improvements than those with severe or mild deficits after the higher-intensity RT. CONCLUSIONS This study demonstrated the higher treatment intensity provided by RT was associated with better motor outcome for patients with stroke, which may shape further stroke rehabilitation. Clinical Trial Registration- URL: http://clinicaltrials.gov. Unique identifier: NCT00917605.
Collapse
Affiliation(s)
- Yu-wei Hsieh
- School of Occupational Therapy, College of Medicine, National Taiwan University, 17, F4, Xu Zhou Road, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, Ling KV. Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys 2011; 35:269-76. [PMID: 21978912 DOI: 10.1016/j.medengphy.2011.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 08/31/2011] [Accepted: 09/04/2011] [Indexed: 11/19/2022]
Abstract
Stroke rehabilitation is labor-intensive and time-consuming. To assist patients and therapists alike, we propose a wearable system that measures orientation and corrects arm posture using vibrotactile actuators. The system evaluates user posture with respect to a reference and gives feedback in the form of vibration patterns. Users correct their arm posture, one DOF at a time, by following a protocol starting from the shoulder up to the forearm. Five users evaluated the proposed system by replicating ten different postures. Experimental results demonstrated system robustness and showed that some postures were easier to mimic depending on their naturalness.
Collapse
Affiliation(s)
- Z Q Ding
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | |
Collapse
|
22
|
Rosati G, Oscari F, Reinkensmeyer DJ, Secoli R, Avanzini F, Spagnol S, Masiero S. Improving robotics for neurorehabilitation: enhancing engagement, performance, and learning with auditory feedback. IEEE Int Conf Rehabil Robot 2011; 2011:5975373. [PMID: 22275577 DOI: 10.1109/icorr.2011.5975373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper reports on an ongoing research collaboration between the University of Padua and the University of California Irvine, on the use of continuous auditory-feedback in robot-assisted neurorehabilitation of post-stroke patients. This feedback modality is mostly underexploited in current robotic rehabilitation systems, that usually implement very basic auditory feedback interfaces. The results of this research show that generating a proper sound cue during robot assisted movement training can help patients in improving engagement, performance and learning in the exercise.
Collapse
Affiliation(s)
- Giulio Rosati
- School of Engineering, University of Padua, Padua, Italy I-35131.
| | | | | | | | | | | | | |
Collapse
|