1
|
Fanaee S, Austin W, Filiaggi M, Adibnia V. External Bleeding and Advanced Biomacromolecules for Hemostasis. Biomacromolecules 2024. [PMID: 39463174 DOI: 10.1021/acs.biomac.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Hemorrhage is a significant medical problem that has been an active area of research over the past few decades. The human body has a complex response to bleeding that leads to blood clot formation and hemostasis. Many biomaterials based on various biomacromolecules have been developed to either accelerate or improve the body's natural response to bleeding. This review examines the mechanisms of hemostasis, types of bleeding, and the in vitro or in vivo models and techniques used to study bleeding and hemostatic materials. It provides a detailed overview of the diverse hemostatic materials, including those that are highly absorbent, wet adhesives, and those that accelerate the biochemical cascade of blood clotting. These materials are currently marketed, under preclinical testing, or being researched. In exploring the latest advancements in hemostatic technologies, this paper highlights the potential of these materials to significantly improve bleeding control in clinical and emergency situations.
Collapse
Affiliation(s)
- Sajjad Fanaee
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - William Austin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mark Filiaggi
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vahid Adibnia
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Wang B, Li X, Wei L, Ma S, Wang J, Zhu W, Wang H. Engineering High-Performance Composite Cellulose Materials for Fast Hemostasis. ACS Biomater Sci Eng 2024; 10:5313-5326. [PMID: 39051461 DOI: 10.1021/acsbiomaterials.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The development of an effective hemostatic agents is of vital importance for saving wounded individuals from uncontrolled hemorrhage, which is the main reason for preventable death after accidental injury. However, current high-performance hemostatic agents suffer from a cumbersome preparation procedures and poor biocompatibility. Here, we engineered a cellulosic-derived aerogel material by simply controlling the drying process of cellulose regeneration for fast hemostasis. Four different freeze-drying pretreatments were investigated. As compared with the other three, the cellulosic aerogel material prepared without freezing pretreatment exhibited the lowest crystallinity (21.3%) and the highest body fluid absorption capacity (20.3 times that of its own weight) due to its super hierarchical porous structure, which led to an excellent hemostatic performance in vitro blood coagulation (≈100 s). Moreover, the addition of gelatin and diatomite in the material could tune the functional groups and electrostatic properties of the aerogel and further enhance its hemostatic performance. Various characterizations, including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), X-ray nanocomputed tomography (CT), scanning electron microscopy (SEM), and zeta potential analysis, were carried out to probe the structure-function relationship of the prepared material, and its mechanism of fast hemostasis was thereafter revealed. The results indicate that the developed aerogel is a cost-effective and feasibly scalable hemostatic material suitable for practical use in industry.
Collapse
Affiliation(s)
- Binshou Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xue Li
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Luyao Wei
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shuaishuai Ma
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wanbin Zhu
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Hongliang Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
3
|
Herliana H, Yusuf HY, Laviana A, Wandawa G, Abbas B. In Vitro Hemostatic Activity of Novel Fish Gelatin-Alginate Sponge (FGAS) Prototype. Polymers (Basel) 2024; 16:2047. [PMID: 39065364 PMCID: PMC11280852 DOI: 10.3390/polym16142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
A hemostatic sponge prototype was successfully synthesized from fish gelatin as an alternative to mammalian gelatin; it was mixed with alginate in certain combinations, double cross-linked with calcium ions, and gamma irradiated at a dose of 20 kGy to improve the characteristics and effectiveness of its function as a local hemostatic agent. There were improvements in the physicochemical and mechanical properties, porosity index, absorption capacity, biodegradation properties, biocompatibility, and hemocompatibility of the fish gelatin-alginate sponge (FGAS) prototypes compared with the pure fish gelatin sponge. Hemostatic activity tests showed that the means for clotting time, prothrombin time, and activated partial thromboplastin time were shorter in the FGAS prototype than in the negative control, and there was no significant difference compared with the commercial gelatin sponge. The hemostatic mechanism of the FGAS prototype combined a passive mechanism as a concentrator factor and an active mechanism through the release of calcium ions as a coagulation factor in the coagulation cascade process.
Collapse
Affiliation(s)
- Heri Herliana
- Doctoral Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Harmas Yazid Yusuf
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Avi Laviana
- Department of Orthodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Ganesha Wandawa
- The Indonesian Naval Dental Institute, Jakarta 10210, Indonesia
| | - Basril Abbas
- Research Center for Radiation Process Technology, National Research and Innovation Agency (NRIA), Jakarta 12440, Indonesia
| |
Collapse
|
4
|
Feng Y, Chen X, He RR, Liu Z, Lvov YM, Liu M. The Horizons of Medical Mineralogy: Structure-Bioactivity Relationship and Biomedical Applications of Halloysite Nanoclay. ACS NANO 2024. [PMID: 39016265 DOI: 10.1021/acsnano.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Medical mineralogy explores the interactions between natural minerals and living organisms such as cells, tissues, and organs and develops therapeutic and diagnostic applications in drug delivery, medical devices, and healthcare materials. Many minerals (especially clays) have been recognized for pharmacological activities and therapeutic potential. Halloysite clay (Chinese medicine name: Chishizhi), manifested as one-dimensional aluminum silicate nanotubes (halloysite nanotubes, HNTs), has gained applications in hemostasis, wound repair, gastrointestinal diseases, tissue engineering, detection and sensing, cosmetics, and daily chemicals formulations. Various biomedical applications of HNTs are derived from hollow tubular structures, high mechanical strength, good biocompatibility, bioactivity, and unique surface characteristics. This natural nanomaterial is safe, abundantly available, and may be processed with environmentally safe green chemistry methods. This review describes the structure and physicochemical properties of HNTs relative to bioactivity. We discuss surface area, porosity and surface defects, hydrophilicity, heterogeneity and charge of external and internal surfaces, as well as biosafety. The paper provides comprehensive guidance for the development of this tubule nanoclay and its advanced biomedical applications for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiangyu Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuri M Lvov
- Institute for Micromanufacturing and Biomedical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| |
Collapse
|
5
|
Cassano R, Perri P, Scarcello E, Piro P, Sole R, Curcio F, Trombino S. Chitosan Hemostatic Dressings: Properties and Surgical Applications. Polymers (Basel) 2024; 16:1770. [PMID: 39000626 PMCID: PMC11244242 DOI: 10.3390/polym16131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Wounds caused by trauma and/or surgery represent a significant challenge in contemporary medical practice, requiring innovative approaches to promote optimal healing and reduce the risk of bleeding and complications resulting from it. In this context, chitosan, a natural polysaccharide derived from chitin, represents an ideal material for the study and application of medical devices, in the form of dressings, in wound management for pre- and/or post-operative wounds due to its ability to induce hemostasis and its high biocompatibility with biological tissues. The aim of this work was to discuss the structural characteristics, properties and application of chitosan-based hemostatic dressings in hemostatic processes resulting from pre- or post-surgical approaches.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (R.C.); (R.S.)
| | - Paolo Perri
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (E.S.); (P.P.)
| | - Edoardo Scarcello
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (E.S.); (P.P.)
| | - Paolo Piro
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (E.S.); (P.P.)
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (R.C.); (R.S.)
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (R.C.); (R.S.)
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (R.C.); (R.S.)
| |
Collapse
|
6
|
Malone S, Yegappan R, Kijas AW, Gemmell A, Rowan AE, Rajah D, Kim M, Lauko J, Amiralian N. The Potential of Sugarcane Waste-Derived Cellulose Fibres as Haemostatic Agents. Polymers (Basel) 2024; 16:1654. [PMID: 38932004 PMCID: PMC11207806 DOI: 10.3390/polym16121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Haemorrhage control during surgery and following traumatic injury remains a critical, life-saving challenge. Cellulose products are already employed in commercially available haemostatic dressings. This work explores sourcing cellulose from sugarcane trash pulp to produce micro- and nanosized fibres with hydroxyl, carboxylic acid, and trimethylamine functional groups, resulting in either positive or negative surface charges. This paper assesses the influence of these fibres on multiple blood clotting parameters in both dispersed solutions and dry gauze applications. In vitro blood clotting studies demonstrated the significant haemostatic potential of cellulose fibres derived from sugarcane waste to initiate clotting. Plasma absorbance assays showed that the 0.25 mg/mL cellulose microfibre dispersion had the highest clotting performance. It was observed that no single property of surface charge, functionality, or fibre morphology exclusively controlled the clotting initiation measured. Instead, a combination of these factors affected clot formation, with negatively charged cellulose microfibres comprising hydroxyl surface groups providing the most promising result, accelerating the coagulation cascade mechanism by 67% compared to the endogenous activity. This difference in clot initiation shows the potential for the non-wood agricultural waste source of cellulose in haemostatic wound healing applications, contributing to the broader understanding of cellulose-based materials' versatility and their applications in biomedicine.
Collapse
Affiliation(s)
| | | | - Amanda W. Kijas
- Australian Institute for Bioengineering and Nanotechnology, Corner College and Cooper Roads, The University of Queensland, Brisbane, QLD 4072, Australia; (S.M.); (R.Y.); (A.G.); (A.E.R.); (D.R.); (M.K.); (J.L.)
| | | | | | | | | | | | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology, Corner College and Cooper Roads, The University of Queensland, Brisbane, QLD 4072, Australia; (S.M.); (R.Y.); (A.G.); (A.E.R.); (D.R.); (M.K.); (J.L.)
| |
Collapse
|
7
|
Ovincy C, Babel S, Baral S, Poudel S, Jain S. Clay Therapy in Wound Healing: A Brief Review of the Literature. JOURNAL OF WOUND MANAGEMENT AND RESEARCH 2024; 20:1-8. [DOI: 10.22467/jwmr.2023.02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/27/2023] [Indexed: 10/04/2024]
Abstract
Clay is ubiquitous, and its hydrous phyllosilicate properties have promoted its use as a traditional wound healing agent in many cultures. Various types of natural clay have been utilized for skin diseases and wound treatments. Therefore, we aimed to study natural and synthetic clay minerals and summarize their applicability in medical settings. A review of prospective studies published since 2008 examining the properties of different forms of natural clay minerals and their therapeutic benefits in wound care was conducted. Studies were obtained using the databases of Google Scholar, PubMed, Web of Science, and HINARI (Health Inter-Network Access to Research Initiative) and searching related journals. The primary outcomes were assessed qualitatively and were categorized by the type of natural clay used. The included papers studied five available types of clay: Chamliyal clay, French green clay, Oregon Mineral Technologies blue clay, Kisameet clay, and various synthetic clays. The studies found how these forms of clay together demonstrate anti-inflammatory and antibacterial properties while promoting fibroblast regeneration and circulation while remaining biocompatible. Clay-based materials may be a potential alternative for conventional dressings for wound healing in resource-limited settings. This review opens doors to expanding clay-based therapies for wound healing.
Collapse
|
8
|
Characterization and Analysis of Chitosan-Gelatin Composite-Based Biomaterial Effectivity as Local Hemostatic Agent: A Systematic Review. Polymers (Basel) 2023; 15:polym15030575. [PMID: 36771876 PMCID: PMC9920696 DOI: 10.3390/polym15030575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Chitosan and gelatin were the most widely used natural materials in pharmaceutical and medical fields, especially as local hemostatic agents, independently or as a composite material with the addition of other active substances. Chitosan and gelatin have excellent properties in biocompatibility, biodegradability, non-toxicity and water absorption capacity. The objective of this review was to analyze the characteristics of chitosan-gelatin (CG) composite-based biomaterial and its effectivity as a local hemostatic agent. We used PRISMA guidelines and the PICO framework to compile this review. The findings demonstrated that the CG composite-based biomaterial had excellent physical, chemical, mechanical properties and local hemostatic agent activity by adding other active substances such as oxidized fibers (OF), silica nanoparticles (SiNPs), calcium (Ca) and biphasic calcium phosphate (BCP) or by setting the CG composite proportion ratio.
Collapse
|
9
|
Thum MD, Lu Q, Stockmaster KT, Haridas D, Fears KP, Balow RB, Lundin JG. 3D‐printable cyclic peptide loaded microporous polymers for antimicrobial wound dressing materials. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew D. Thum
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Qin Lu
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | | | - Dhanya Haridas
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Kenan P. Fears
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Robert B. Balow
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Jeffrey G. Lundin
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| |
Collapse
|
10
|
Mohamed E, Wang Y, Crispin PJ, Fitzgerald A, Dahlstrom JE, Fowler S, Nisbet DR, Tsuzuki T, Coupland LA. Superior Hemostatic and Wound-Healing Properties of Gel and Sponge Forms of Non-Oxidized Cellulose Nanofibers: In Vitro and In Vivo Studies. Macromol Biosci 2022; 22:e2200222. [PMID: 35906813 DOI: 10.1002/mabi.202200222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/21/2022] [Indexed: 11/05/2022]
Abstract
Many materials have been engineered and commercialized as hemostatic agents. However, there is still a gap in the availability of hemostats that offer biocompatibility and biodegradability in combination with effective hemostatic properties. Cellulose nanofibers were investigated as hemostatic materials with most studies focusing on oxidized cellulose-derived hemostats. Our recent studies demonstrated that by optimizing the morphological properties of non-oxidized cellulose nanofibers (CNFs) enhanced hemostasis is achieved. Herein, we investigate the hemostatic and wound-healing properties of CNFs with optimized morphology using two forms, gel and sponge. In vitro thromboelastometry studies demonstrate that CNFs reduce clotting time by 68% (±SE 2%) and 88% (±SE 5%) in gel and sponge forms, respectively. In an in vivo murine liver injury model, CNFs significantly reduce blood loss by 38% (±SE 10%). The pH-neutral CNFs do not damage red blood cells, nor do they impede the proliferation of fibroblast or endothelial cells. Subcutaneously-implanted CNFs show a foreign body reaction resolving with the degradation of CNFs on histological examination and there is no scarring in the skin after 8 weeks. Demonstrating superior hemostatic performance in a variety of forms, as well as biocompatibility and biodegradability, CNFs hold significant potential for use in surgical and first-aid environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elmira Mohamed
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Acton, ACT, 2601, Australia.,ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia
| | - Yi Wang
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Philip J Crispin
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia.,Haematology Department, The Canberra Hospital, Yamba Dr, Garran, ACT, 2605, Australia
| | - Ailene Fitzgerald
- Department of Trauma surgery, The Canberra Hospital, Yamba Dr, Garran, ACT, 2605, Australia
| | - Jane E Dahlstrom
- ACT Pathology, The Canberra Hospital, Yamba Dr, Garran, ACT, 2605, Australia.,Medical School, College of Health and Medicine, The Australian National University, Acton, ACT, 2601, Australia
| | - Suzanne Fowler
- Veterinary Services Team, The Australian National University, Acton, ACT, 2601, Australia
| | - David R Nisbet
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Australia
| | - Takuya Tsuzuki
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Acton, ACT, 2601, Australia
| | - Lucy A Coupland
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
11
|
Pantalone D, Chiara O, Henry S, Cimbanassi S, Gupta S, Scalea T. Facing Trauma and Surgical Emergency in Space: Hemorrhagic Shock. Front Bioeng Biotechnol 2022; 10:780553. [PMID: 35845414 PMCID: PMC9283715 DOI: 10.3389/fbioe.2022.780553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Although the risk of trauma in space is low, unpredictable events can occur that may require surgical treatment. Hemorrhage can be a life-threatening condition while traveling to another planet and after landing on it. These exploration missions call for a different approach than rapid return to Earth, which is the policy currently adopted on the International Space Station (ISS) in low Earth orbit (LEO). Consequences are difficult to predict, given the still scarce knowledge of human physiology in such environments. Blood loss in space can deplete the affected astronaut’s physiological reserves and all stored crew supplies. In this review, we will describe different aspects of hemorrhage in space, and by comparison with terrestrial conditions, the possible solutions to be adopted, and the current state of the art.
Collapse
Affiliation(s)
- D. Pantalone
- Department of Experimental and Clinical Medicine, Fellow of the American College of Surgeons, Core Board and Head for Studies on Traumatic Events and Surgery in the European Space Agency-Topical Team on “Tissue Healing in Space Techniques for Promoting and Monitoring Tissue Repair and Regeneration” for Life Science Activities Agency, Assistant Professor in General Surgery, Specialist in Vascular Surgery, Emergency Surgery Unit–Trauma Team, Emergency Department–Careggi University Hospital, University of Florence, Florence, Italy
- *Correspondence: D. Pantalone,
| | - O. Chiara
- Fellow of the American College of Surgeons, Director of General Surgery–Trauma Team, ASST GOM Grande Ospedale Metropolitano Niguarda, Professor of Surgery, University of Milan, Milan, Italy
| | - S. Henry
- Fellow of the American College of Surgeons, Director Division of Wound Healing and Metabolism, R Adams Cowley Shock Trauma Center University of Maryland, Baltimore, MD, United States
| | - S. Cimbanassi
- Fellow of the American College of Surgeons, EMDM, Vice Director of General Surgery-Trauma Team, ASST GOM Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - S. Gupta
- Fellow of the American College of Surgeons, R Adams Cowl y Shock Trauma Center, University of Maryland, Baltimore, MD, United States
| | - T. Scalea
- Fellow of the American College of Surgeons, The Honorable Francis X. Kelly Distinguished Professor of Trauma Surgery.Physician-in-Chief, R Adams Cowley Shock Trauma Center, System Chief for Critical Care Services, University of Maryland Medical System, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
12
|
Jana S, Das P, Mukherjee J, Banerjee D, Ghosh PR, Kumar Das P, Bhattacharya RN, Nandi SK. Waste-derived biomaterials as building blocks in the biomedical field. J Mater Chem B 2022; 10:489-505. [PMID: 35018942 DOI: 10.1039/d1tb02125g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments in the biomedical arena have led to the fabrication of innovative biomaterials by utilizing bioactive molecules obtained from biological wastes released from fruit and beverage processing industries, and fish, meat, and poultry industries. These biological wastes that end up in water bodies as well as in landfills are an affluent source of animal- and plant-derived proteins, bio ceramics and polysaccharides such as collagens, gelatins, chitins, chitosans, eggshell membrane proteins, hydroxyapatites, celluloses, and pectins. These bioactive molecules have been intricately designed into scaffolds and dressing materials by utilizing advanced technologies for drug delivery, tissue engineering, and wound healing relevance. These biomaterials are environment-friendly, biodegradable, and biocompatible, and show excellent tissue regeneration attributes. Additionally, being cost-effective they can reduce the burden on the healthcare system as well as provide a sustainable solution to waste management. In this review, the current trends in the utilization of plant and animal waste-derived biomaterials in various biomedical fields are considered along with a separate section on their applications as xenografts.
Collapse
Affiliation(s)
- Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Piyali Das
- Department of Microbiology, School of Life Sciences and Biotechnology, Adamas University, Barasat, West Bengal 700126, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | | | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| |
Collapse
|
13
|
González García LE, Ninan N, Simon J, Madathiparambil Visalakshan R, Bright R, Wahono SK, Ostrikov K, Mailänder V, Landfester K, Goswami N, Vasilev K. Ultra-small gold nanoclusters assembled on plasma polymer-modified zeolites: a multifunctional nanohybrid with anti-haemorrhagic and anti-inflammatory properties. NANOSCALE 2021; 13:19936-19945. [PMID: 34820678 DOI: 10.1039/d1nr06591b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hemostatic agents are pivotal for managing clinical and traumatic bleeding during emergency and domestic circumstances. Herein, a novel functional hybrid nanocomposite material consisting of plasma polymer-modified zeolite 13X and ultra-small gold nanoclusters (AuNCs) was fabricated as an efficient hemostatic agent. The surface of zeolite 13X was functionalised with amine groups which served as binding sites for carboxylate terminated AuNCs. Protein corona studies revealed the enhanced adsorption of two proteins, namely, coagulation factors and plasminogen as a result of AuNCs immobilization on the zeolite surface. The immune response studies showed that the hybrid nanocomposites are effective in reducing inflammation, which combined with a greater attachment of vitronectin, may promote wound healing. The hemostatic potential of the nanocomposite could be directly correlated with their immunomodulatory and anti-haemorrhagic properties. Together, the hybrid nanoengineered material developed in this work could provide a new avenue to tackle life-threatening injuries in civilian and other emergencies.
Collapse
Affiliation(s)
- Laura E González García
- Academic Unit of STEM, The University of South Australia, Mawson Lakes, SA 5095, Australia.
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Neethu Ninan
- Academic Unit of STEM, The University of South Australia, Mawson Lakes, SA 5095, Australia.
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Johanna Simon
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | - Richard Bright
- Academic Unit of STEM, The University of South Australia, Mawson Lakes, SA 5095, Australia.
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Satriyo K Wahono
- Research Division for Natural Product Technology, Indonesian Institutes of Sciences, Jl. Jogja-Wonosari km 32, Gading, Playen, Gunungkidul, Yogyakarta 55861, Indonesia
| | - Kostya Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Volker Mailänder
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katharina Landfester
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Nirmal Goswami
- Academic Unit of STEM, The University of South Australia, Mawson Lakes, SA 5095, Australia.
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar-751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Krasimir Vasilev
- Academic Unit of STEM, The University of South Australia, Mawson Lakes, SA 5095, Australia.
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
14
|
Yang H, Ma Z, Guan X, Xiang Z, Ke Y, Xia Y, Xin Z, Shi Q, Yin J. Facile fabrication of diatomite‐based sponge with high biocompatibility and rapid hemostasis. J Appl Polym Sci 2021. [DOI: 10.1002/app.51360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- He Yang
- School of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Zhirong Xin
- School of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- University of Science and Technology of China Hefei China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| |
Collapse
|
15
|
Roy A, Guha Ray P, Manna K, Banerjee C, Dhara S, Pal S. Poly( N-vinyl imidazole) Cross-Linked β-Cyclodextrin Hydrogel for Rapid Hemostasis in Severe Renal Arterial Hemorrhagic Model. Biomacromolecules 2021; 22:5256-5269. [PMID: 34755513 DOI: 10.1021/acs.biomac.1c01174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A unique facile process has been adopted for fast assembly of a poly(N-vinyl imidazole) cross-linked β-cyclodextrin hydrogel through microwave-assisted free radical polymerization, using N,N'-methylenebis(acrylamide) cross-linker. The copolymer possesses positive surface charge, one of the characteristic properties of an ideal hemostatic hydrogel. The functionalized imidazole-based hydrogel demonstrates rapid, superior blood coagulation kinetics under in vitro and in vivo conditions. On application to a major renal arterial hemorrhagic model, this hydrogel shows better blood clotting kinetics, leading to complete hemostasis in as few as ∼144 ± 7 s. Additionally, 350 μL of whole blood was clotted instantly, in ∼35 s, and therefore, reinforcing its hemostatic potential. The hydrogel demonstrates excellent biocompatibility, when seeded with human dermal fibroblast cells, retaining the native property of its predecessor. In addition, the hydrogel presents excellent hemocompatibility when tested with whole blood with the highest hemolytic ratio of 1.07 ± 0.05%. Moreover, it also demonstrates potential as a carrier for sustained release of an anesthetic drug, lidocaine hydrochloride monohydrate (∼83% in 24 h). The rapid hemostatic behavior of the hydrogel is coupled with its cytocompatibility and hemocompatibilty properties along with controlled drug release characteristics. These behaviors evidently demonstrate it to be an excellent alternative for a superior hemostatic material for severe hemorrhagic conditions.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Kalipada Manna
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Chiranjib Banerjee
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sagar Pal
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| |
Collapse
|
16
|
Yu P, Zhong W. Hemostatic materials in wound care. BURNS & TRAUMA 2021; 9:tkab019. [PMID: 34541007 PMCID: PMC8445204 DOI: 10.1093/burnst/tkab019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Blood plays an essential role in the human body. Hemorrhage is a critical cause of both military and civilian casualties. The human body has its own hemostatic mechanism that involves complex processes and has limited capacity. However, in emergency situations such as battlefields and hospitals, when the hemostatic mechanism of the human body itself cannot stop bleeding effectively, hemostatic materials are needed for saving lives. In this review, the hemostatic mechanisms and performance of the most commonly used hemostatic materials, (including fibrin, collagen, zeolite, gelatin, alginate, chitosan, cellulose and cyanoacrylate) and the commercial wound dressings based on these materials, will be discussed. These materials may have limitations, such as poor tissue adhesion, risk of infection and exothermic reactions, that may lessen their hemostatic efficacy and cause secondary injuries. High-performance hemostatic materials, therefore, have been designed and developed to improve hemostatic efficiency in clinical use. In this review, hemostatic materials with advanced performances, such as antibacterial capacity, superhydrophobicity/superhydrophilicity, superelasticity, high porosity and/or biomimicry, will be introduced. Future prospects of hemostatic materials will also be discussed in this review.
Collapse
Affiliation(s)
- Peiyu Yu
- Department of Biosystems Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada
| |
Collapse
|
17
|
|
18
|
Cau MF, Strilchuk AW, Kastrup CJ. Nanomedicines for hemorrhage control. J Thromb Haemost 2021; 19:887-891. [PMID: 33694243 DOI: 10.1111/jth.15211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Amy W Strilchuk
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Li J, Sun X, Zhang K, Yang G, Mu Y, Su C, Pang J, Chen T, Chen X, Feng C. Chitosan/Diatom-Biosilica Aerogel with Controlled Porous Structure for Rapid Hemostasis. Adv Healthc Mater 2020; 9:e2000951. [PMID: 33006258 DOI: 10.1002/adhm.202000951] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Uncontrolled hemorrhage is the main reason of possible preventable death after accidental injury. It is necessary to develop a hemostatic agent with rapid hemostatic performance and good biocompatibility. In this study, a chitosan/diatom-biosilica-based aerogel is developed using dopamine as cross-linker by simple alkaline precipitation and tert-butyl alcohol replacement. The chitosan/diatom-biosilica aerogel exhibits favorable biocompatibility and multiscale hierarchical porous structure (from nanometer to micrometer), which can be controlled by the concentration of tert-butyl alcohol. The displacement of tert-butyl alcohol can keep the porosity of diatom-biosilica in aerogel and give it large surface with efficient water absorption ratio. 30% tert-butyl alcohol replacement of aerogel possesses the largest surface area (74.441 m2 g-1 ), water absorption capacity (316.83 ± 2.04%), and excellent hemostatic performance in vitro blood coagulation (≈70 s). Furthermore, this aerogel exhibits the shortest clotting time and lowest blood loss in rat hemorrhage model. The strong interface effect between aerogel and blood is able to promote erythrocytes aggregation, platelets adhesion, and activation, as well as, activate the intrinsic coagulation pathway to accelerate blood coagulation. All the above results demonstrate that chitosan/diatom-biosilica aerogel has great potential to be a safe and rapid hemostatic material.
Collapse
Affiliation(s)
- Jing Li
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Xiaojie Sun
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Kaichao Zhang
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Guoning Yang
- Heze Institute for Food and Drug Control Heze 274000 China
| | - Yuzhi Mu
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Chang Su
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Jianhui Pang
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Tongtong Chen
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Xiguang Chen
- College of Marine Life Science Ocean University of China Qingdao 266000 China
- Qingdao National Laboratory for Marine Science and Technology Qingdao 266000 China
| | - Chao Feng
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| |
Collapse
|
20
|
Hemostatic Enhancement via Chitosan Is Independent of Classical Clotting Pathways-A Quantitative Study. Polymers (Basel) 2020; 12:polym12102391. [PMID: 33080780 PMCID: PMC7603022 DOI: 10.3390/polym12102391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
Hemostasis is a process causing bleeding to stop, and it is known from the literature that hemostasis can be enhanced using chitosan on wound gauzes. We proposed here a continuous flow-through device, with the test blood flowing through the gauze sample at a constant flow rate and the pressure drop across the gauze measured, for assessing the hemostatic performance of the gauze. Experiments were performed using the device with both whole blood and washed blood (with clotting factors and platelets removed from the whole blood), and their results agree with each other within 10% discrepancy, indicating quantitatively that hemostatic enhancement via chitosan is essentially independent of classical clotting pathways, which was demonstrated qualitatively through animal tests in the literature. The proposed device and method can be applied for evaluating quantitatively the hemostatic performance of various gauzes in a flowing blood environment (in comparison with static tests) with less test blood (20-60% less, in comparison with that of a flow-through device driven by a constant pressure gradient), and are thus, helpful for designing better wound gauzes. In particular, it is effective to enhance the hemostatic performance further (additional 30%) through acidification (changing the amino group to the ammonium group) of the gauze for chitosan-based wound gauzes.
Collapse
|
21
|
Wang Y, Liu G, Wu L, Qu H, Song D, Huang H, Wu C, Xu M. Rational design of porous starch/hyaluronic acid composites for hemostasis. Int J Biol Macromol 2020; 158:S0141-8130(20)33164-0. [PMID: 32387600 DOI: 10.1016/j.ijbiomac.2020.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
Effective hemorrhage control is pivotal for decreasing the trauma death both in civilian and military but has proven to be dauntingly challenging, especially for solid viscera and artery trauma. Here we report the fabrication of a novel starch-based hemostat, sodium trimethaphosphate (STMP)-crosslinked starch/hyaluronic acid (HA) (ScSH) porous composites. Aiming at hemostatic potential, physicochemical properties, cytocompatibility, hemocompatibility, histocompatibility and hemostatic performance of ScSH composites have been studied. As it turned out, the incorporation of HA greatly improved the water absorption capacity and hemostatic performance of ScSH composites. In addition, the composites with a non-toxic crosslinker exhibited non-cytotoxicity, low hemolysis ratio (0.97%) and favorable histocompatibility. Meanwhile, the composites performed exceptionally well in blood clotting of superficial injury, solid viscera and artery trauma and displayed similar hemostatic efficacy to commercialized hemostat (Quickclean® particles). Unambiguously, these encouraging results highlighted potential of our materials to be used as hemostats and made the approach, constructing porous starch/HA composites, a promising strategy to accelerate further development of hemostatic agents applied both in vivo and in vitro.
Collapse
Affiliation(s)
- Yanling Wang
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Guangwan Liu
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China.
| | - Lijuan Wu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Hongyuan Qu
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Deli Song
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Hailong Huang
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China
| | - Changlin Wu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China.
| | - Min Xu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
22
|
Wang YW, Liu CC, Cherng JH, Lin CS, Chang SJ, Hong ZJ, Liu CC, Chiu YK, Hsu SD, Chang H. Biological Effects of Chitosan-Based Dressing on Hemostasis Mechanism. Polymers (Basel) 2019; 11:E1906. [PMID: 31752424 PMCID: PMC6918334 DOI: 10.3390/polym11111906] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022] Open
Abstract
There have been numerous recent advances in wound care management. Nevertheless, the assessment of hemostatic dressing is essential to enable surgeons and other physicians and healthcare professionals to make the correct decisions regarding the disposition of severe hemorrhage. Here, we investigated the relative efficacies of chitosan-based and conventional gauze dressings in a rat model of femoral artery hemorrhage and in patients with surgical wounds. Dressing effectiveness was evaluated based on hemostatic profiles, biocompatibility, antimicrobial activity, and blood factor responses in coagulation. Relative to standard gauze dressing, the chitosan fiber (CF) dressing treatment significantly shortened the time to hemostasis in injured rats. Moreover, the CF dressing significantly prolonged partial thromboplastin time, enhanced blood absorption, and reduced antithrombin production without altering the prothrombin ratio. Unlike regular gauze bandages, the CF dressing demonstrated remarkable antibacterial activity. The results of this study indicate the effectiveness of chitosan as a hemostatic dressing and elucidate its underlying mechanism. It is possible that chitosan surgical dressings could serve as first-line intervention in hospital emergency care for uncontrolled hemorrhage.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 100, Taiwan; (Y.-W.W.); (J.-H.C.)
| | - Chuan-Chieh Liu
- School of Medicine, Fu-Jen Catholic University, New Taipei City 100, Taiwan;
- Department of Cardiology, Cardinal Tien Hospital, Taipei 100, Taiwan
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 100, Taiwan; (Y.-W.W.); (J.-H.C.)
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 100, Taiwan
| | - Chien-Seng Lin
- Department of Emergency and Critical Care Medicine, Cheng Hsin Rehabilitation Medical Center, Taipei 100, Taiwan;
| | - Shu-Jen Chang
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 100, Taiwan;
| | - Zhi-Jie Hong
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 100, Taiwan;
| | - Cheng-Che Liu
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 100, Taiwan;
| | - Yaw-Kwan Chiu
- Department of Pediatrics, School of Medicine, National Defense Medical Center, Tri-Service General Hospital, National Defense Medical Center, Songshan Branch, Taipei 100, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 100, Taiwan
| | - Sheng-Der Hsu
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 100, Taiwan;
| | - Hung Chang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 100, Taiwan
| |
Collapse
|
23
|
Chen H, Shang X, Yu L, Xiao L, Fan J. Safety evaluation of a low-heat producing zeolite granular hemostatic dressing in a rabbit femoral artery hemorrhage model. J Biomater Appl 2019; 34:988-997. [DOI: 10.1177/0885328219888626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqiang Shang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisha Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liping Xiao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Fan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Zagho MM, Hussein EA, Elzatahry AA. Recent Overviews in Functional Polymer Composites for Biomedical Applications. Polymers (Basel) 2018; 10:E739. [PMID: 30960664 PMCID: PMC6403933 DOI: 10.3390/polym10070739] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/30/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Composite materials are considered as an essential part of our daily life due to their outstanding properties and diverse applications. Polymer composites are a widespread class of composites, characterized by low cost, facile processing methods, and varied applications ranging from daily-use issues to highly complicated electronics and advanced medical combinations. In this review, we focus on the most important fabrication techniques for bioapplied polymer composites such as electrospinning, melt-extrusion, solution mixing, and latex technology, as well as in situ methods. Additionally, significant and recent advances in biomedical applications are spotlighted, such as tissue engineering (including bone, blood vessels, oral tissues, and skin), dental resin-based composites, and wound dressing.
Collapse
Affiliation(s)
- Moustafa M Zagho
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Essraa A Hussein
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| |
Collapse
|
25
|
Panesar SS, Ashkan K. Surgery in space. Br J Surg 2018; 105:1234-1243. [DOI: 10.1002/bjs.10908] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/12/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023]
Abstract
Abstract
Background
There has been renewed public interest in manned space exploration owing to novel initiatives by private and governmental bodies. Long-term goals include manned missions to, and potential colonization of, nearby planets. Travel distances and mission length required for these would render Earth-based treatment and telemedical solutions unfeasible. These issues present an anticipatory challenge to planners, and novel or adaptive medical technologies must therefore be devised to diagnose and treat the range of medical issues that future space travellers will encounter.
Methods
The aim was to conduct a search of the literature pertaining to human physiology, pathology, trauma and surgery in space.
Results
Known physiological alterations include fluid redistribution, cardiovascular changes, bone and muscle atrophy, and effects of ionizing radiation. Potential pathological mechanisms identified include trauma, cancer and common surgical conditions, such as appendicitis.
Conclusion
Potential surgical treatment modalities must consist of self-sufficient and adaptive technology, especially in the face of uncertain pathophysiological mechanisms and logistical concerns.
Collapse
Affiliation(s)
- S S Panesar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - K Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Sigal A, Martin A, Ong A. Availability and use of hemostatic agents in prehospital trauma patients in Pennsylvania translation from the military to the civilian setting. Open Access Emerg Med 2017; 9:47-52. [PMID: 28740438 PMCID: PMC5505603 DOI: 10.2147/oaem.s134657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To understand the translation of one innovation in trauma care from the military to the civilian setting, the adoption of topical hemostatic agents in the Emergency Medical Services (EMS) community and in Trauma Centers in Pennsylvania. METHOD We utilized an anonymous electronic survey of EMS Agency Administrative Officers and Trauma Center Coordinators. RESULTS We received responses from 23% (93/402) Advanced Life Support and Air Medical agencies in the State. Of the EMS agencies that responded, 46.6% (61/131) stock hemostatic products, with 55.5% (44/79) carrying QuickClot® Combat Gauze®. Of the agencies that carried hemostatic products, 50% utilized them at least once in the prior 6 months and 59% over the past 12 months. Despite the infrequent number of applications, prehospital providers ranked themselves as somewhat skilled and comfortable both with the application of the products and the indications for their use. CONCLUSION Our survey found that 46.6% of the respondents indicated they carry hemostatic products, a much greater number than found on prior surveys of EMS agencies. There is a steady acceptance by EMS of new innovations in trauma care although more work is needed in translating the exact role of hemostatic agents in the civilian setting.
Collapse
Affiliation(s)
| | | | - Adrian Ong
- Department of Surgery, Trauma Section, The Reading Hospital, West Reading, PA, USA
| |
Collapse
|
27
|
Assessing Coagulation by Rotational Thromboelastometry (ROTEM) in Rivaroxaban-Anticoagulated Blood Using Hemostatic Agents. Prehosp Disaster Med 2017. [DOI: 10.1017/s1049023x17006641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIntroductionThe use of direct oral anticoagulants (DOACs) such as rivaroxaban (Xarelto) is increasingly common. However, therapies for reversing anticoagulation in the event of hemorrhage are limited. This study investigates the ability of hemostatic agents to improve the coagulation of rivaroxaban-anticoagulated blood, as measured by rotational thromboelastometry (ROTEM).Hypothesis/ProblemIf a chitosan-based hemostatic agent (Celox), which works independently of the clotting cascade, is applied to rivaroxaban-anticoagulated blood, it should improve coagulation by decreasing clotting time (CT), decreasing clot formation time (CFT), and increasing maximum clot firmness (MCF). If a kaolin-based hemostatic agent (QuikClot Combat Gauze), which works primarily by augmenting the clotting cascade upstream of factor Xa (FXa), is applied to rivaroxaban-anticoagulated blood, it will not be effective at improving coagulation.MethodsPatients (age >18 years; non-pregnant) on rivaroxaban, presenting to the emergency department (ED) at two large, university-based medical centers, were recruited. Subjects (n=8) had blood drawn and analyzed using ROTEM with and without the presence of a kaolin-based and a chitosan-based hemostatic agent. The percentage of patients whose ROTEM parameters responded to the hemostatic agent and percent changes in coagulation parameters were calculated.ResultsData points analyzed included: CT, CFT, and MCF. Of the samples treated with a kaolin-based hemostatic agent, seven (87.5%) showed reductions in CT, eight (100.0%) showed reductions in CFT, and six (75.0%) showed increases in MCF. The average percent change in CT, CFT, and MCF for all patients was 32.5% (Standard Deviation [SD]: 286; Range:-75.3 to 740.7%); -66.0% (SD:14.4; Range: -91.4 to -44.1%); and 4.70% (SD: 6.10; Range: -4.8 to 15.1%), respectively. The corresponding median percent changes were -68.1%, -64.0%, and 5.2%. Of samples treated with a chitosan-based agent, six (75.0%) showed reductions in CT, three (37.5%) showed reductions in CFT, and five (62.5%) showed increases in MCF. The average percent changes for CT, CFT, and MCF for all patients were 165.0% (SD: 629; Range:-96.9 to 1718.5%); 139.0% (SD: 174; Range: -83.3 to 348.0%); and -8.38% (SD: 32.7; Range:-88.7 to 10.4%), respectively. The corresponding median percent changes were -53.7%, 141.8%, and 3.0%.ConclusionsRotational thromboelastometry detects changes in coagulation parameters caused by hemostatics applied to rivaroxaban-anticoagulated blood. These changes trended in the direction towards improved coagulability, suggesting that kaolin-based and chitosan-based hemostatics may be effective at improving coagulation in these patients.BarJ, DavidA, KhaderT, MulcareM, TedeschiC. Assessing coagulation by rotational thromboelastometry (ROTEM) in rivaroxaban-anticoagulated blood using hemostatic agents. Prehosp Disaster Med. 2017;32(5):580–587.
Collapse
|
28
|
Bleeding Control Using Hemostatic Dressings: Lessons Learned. Wilderness Environ Med 2017; 28:S39-S49. [DOI: 10.1016/j.wem.2016.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/21/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022]
|
29
|
Lundin JG, McGann CL, Daniels GC, Streifel BC, Wynne JH. Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629071 DOI: 10.1016/j.msec.2017.05.084] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are numerous challenges associated with the acute care of traumatic limb injuries in forward military settings. A lack of immediate medical facilities necessitates that the wound dressing perform multiple tasks including exudate control, infection prevention, and physical protection of the wound for extended periods of time. Here, kaolin was incorporated into recently developed robust polyurethane (PU) hydrogel foams at 1-10wt% in an effort to impart hemostatic character. ATR-IR and gel fraction analysis demonstrated that the facile, one-pot synthesis of the PU hydrogel was unaffected by kaolin loading, as well as the use of a non-toxic catalyst, which significantly improved cytocompatibility of the materials. Kaolin was generally well dispersed throughout the PU matrix, though higher loadings exhibited minor evidence of aggregation. Kaolin-PU composites exhibited burst release of ciprofloxacin over 2h, the initial release rates of which increased with kaolin loading. Kaolin loading imparted excellent hemostatic character to the PU foams at relatively low loading levels (5wt%). This work demonstrates the simple and inexpensive synthesis of robust, hemostatic, and absorptive kaolin-PU foams that have promising potential as multifunctional wound dressing materials.
Collapse
Affiliation(s)
- Jeffrey G Lundin
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, USA.
| | - Christopher L McGann
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, USA
| | - Grant C Daniels
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, USA
| | - Benjamin C Streifel
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, USA
| | - James H Wynne
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, USA
| |
Collapse
|
30
|
Pourshahrestani S, Zeimaran E, Djordjevic I, Kadri NA, Towler MR. Inorganic hemostats: The state-of-the-art and recent advances. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:1255-68. [DOI: 10.1016/j.msec.2015.09.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 09/03/2015] [Indexed: 11/30/2022]
|
31
|
Hsu BB, Conway W, Tschabrunn CM, Mehta M, Perez-Cuevas MB, Zhang S, Hammond PT. Clotting Mimicry from Robust Hemostatic Bandages Based on Self-Assembling Peptides. ACS NANO 2015; 9:9394-406. [PMID: 26284753 PMCID: PMC4580967 DOI: 10.1021/acsnano.5b02374] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/18/2015] [Indexed: 05/18/2023]
Abstract
Uncontrolled bleeding from traumatic wounds is a major factor in deaths resulting from military conflict, accidents, disasters and crime. Self-assembling peptide nanofibers have shown superior hemostatic activity, and herein, we elucidate their mechanism by visualizing the formation of nanofiber-based clots that aggregate blood components with a similar morphology to fibrin-based clots. Furthermore, to enhance its direct application to a wound, we developed layer-by-layer assembled thin film coatings onto common materials used for wound dressings-gauze and gelatin sponges. We find these nanofibers elute upon hydration under physiological conditions and generate nanofiber-based clots with blood. After exposure to a range of harsh temperature conditions (-80 to 60 °C) for a week and even 5 months at 60 °C, these hemostatic bandages remain capable of releasing active nanofibers. In addition, the application of these nanofiber-based films from gauze bandages was found to accelerate hemostasis in porcine skin wounds as compared to plain gauze. The thermal robustness, in combination with the self-assembling peptide's potent hemostatic activity, biocompatibility, biodegradability, and low cost of production, makes this a promising approach for a cheap yet effective hemostatic bandage.
Collapse
Affiliation(s)
- Bryan B. Hsu
- Departments of Chemistry, Chemical Engineering, and Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Soldier Nanotechnologies, Cambridge, Massachusetts 02139, United States
| | - William Conway
- Departments of Chemistry, Chemical Engineering, and Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cory M. Tschabrunn
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Manav Mehta
- 3-D Matrix Medical Technology, Waltham, Massachusetts 02451, United States
| | - Monica B. Perez-Cuevas
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shuguang Zhang
- Center for Bits & Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Paula T. Hammond
- Departments of Chemistry, Chemical Engineering, and Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute for Soldier Nanotechnologies, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Penn-Barwell JG, Brown KV, Fries CA. High velocity gunshot injuries to the extremities: management on and off the battlefield. Curr Rev Musculoskelet Med 2015; 8:312-7. [PMID: 26108862 DOI: 10.1007/s12178-015-9289-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The gunshot wounds sustained on the battlefield caused by military ammunition can be different in nature to those usually encountered in the civilian setting. The main difference is that military ammunition has typically higher velocity with therefore greater kinetic energy and consequently potential to destroy tissue. The surgical priorities in the management of gunshot wounds are hemorrhage control, preventing infection, and reconstruction. The extent to which a gunshot wound needs to be surgically explored can be difficult to determine and depends on the likely amount of tissue destruction and the delay between wounding and initial surgical treatment. Factors associated with greater energy transfer, e.g., bullet fragmentation and bony fractures, are predictors of increased wound severity and therefore a requirement for more surgical exploration and likely debridement. Gunshot wounds should never be closed primarily; the full range of reconstruction from secondary intention to free tissue transfer may be required.
Collapse
Affiliation(s)
- Jowan G Penn-Barwell
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine (RCDM), ICT Research Park, Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK,
| | | | | |
Collapse
|
33
|
Bayır A, Eryılmaz M, Demirbilek M, Denkbaş EB, Arzıman I, Durusu M. Comparison of the topical haemostatic efficacy of nano-micro particles of clinoptilolite and kaolin in a rat model of haemorrhagic injury. Eur J Trauma Emerg Surg 2015; 42:77-86. [PMID: 26038025 DOI: 10.1007/s00068-015-0506-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE This study was designed to investigate if the potential haemostatic efficacy of gauze-impregnated clinoptilolite created with nano-technology is as strong as the widely used kaolin to control pulsatile arterial bleeding due to major vascular injury. METHODS 42 rats were separated into three groups of kaolin, clinoptilolite and control groups. The femoral artery was isolated and active arterial haemorrhage was performed. After 30 s of free arterial haemorrhage, compression was applied with a standard 100 g scale and haemostasis was assessed at the 1st, 3rd and 5th minutes. All groups were observed throughout 60 min for survival without any fluid resuscitation and the mean arterial pressure, pulse, body/surface temperature and arterial blood gas values were measured. RESULTS In the control group, haemostasis did not develop in any of the 12 rats and the survival rate was 5/12 (41.66 %). In the kaolin group, haemostasis developed in seven rats and of these, bleeding reoccurred in four. The survival rate was 10/13 (76.92 %). In the clinoptilolite group, haemostasis developed in eight rats and bleeding recurred in only one. The survival rate was 100 %. In terms of survival, the clinoptilolite and kaolin groups showed superiority to the control group (p = 0.002, p = 0.082). In the evaluation of recurrent haemorrhaging in the rats with haemostasis, clinoptilolite was observed to provide better coagulation than kaolin. CONCLUSION A statistically significant difference was determined in clinoptilolite and kaolin group, when they are separately compared with the control group in respect of the effect on MAP, HCO3 (-), lactate, base excess, haemostasis duration and survival rates. The effect of clinoptilolite on haemostasis and survival time was observed to be at least as good as that of kaolin; therefore, clinoptilolite can be used as an active ingredient in a topical haemostat.
Collapse
Affiliation(s)
- A Bayır
- Department of Emergency Medicine, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Selimiye Mh, Tıbbiye Cd, Üsküdar, 34668, Istanbul, Turkey.
| | - M Eryılmaz
- Department of Emergency Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | - M Demirbilek
- Department of Nanotechnology and Nanomedicine, University of Hacettepe, Ankara, Turkey
| | - E B Denkbaş
- Department of Nanotechnology and Nanomedicine, University of Hacettepe, Ankara, Turkey
| | - I Arzıman
- Department of Emergency Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | - M Durusu
- Department of Emergency Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
34
|
Hattori H, Ishihara M. Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. ACTA ACUST UNITED AC 2015; 10:015014. [PMID: 25611127 DOI: 10.1088/1748-6041/10/1/015014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because the molecular weight (Mw) and degree of deacetylation (DDA) of chitosan can vary depending on the purification method, the identification of appropriate chitosan structures is important for developing more effective hemostatic agents. In this study, the influence of varying Mw and DDA of chitosan on blood aggregation was characterized by 10 types of chitosan with different Mw and DDA, including oligomers. The highest aggregation of whole blood, washed erythrocytes and platelets in platelet-rich plasma (PRP) were observed in chitosan with Mw of 8.6 kDa or more and with DDA of 75 to 88%. However, chitosan with too high Mw (247 kDa) inhibited the aggregation of whole blood, washed erythrocytes and PRP at high chitosan concentration. At certain concentrations, chitosan with 75-85% DDA and 50-190 kDa and chitosan with 87.6% DDA and 247 kDa both aggregated proteins in PRP. Chitosan oligomer did not affect blood aggregation. The results suggested that the aggregation by chitosan depended on the interaction of positively charged chitosan with negatively charged erythrocytes, platelets and plasma protein. It seemed that a suitable balance of positive charge in chitosan and negative charge in hemocytes and some kinds of proteins was important. To develop a hemostatic with effective blood aggregation, the chitosan should not be limited to a single Mw and a single DDA but may be a mixed chitosan with wide range of Mw (8.6-247 kDa) and DDA of 75 to 88%.
Collapse
Affiliation(s)
- Hidemi Hattori
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Saitama, Japan
| | | |
Collapse
|
35
|
Prabhu NC, Song LMWK. Achieving hemostasis and the risks associated with therapy. Gastrointest Endosc Clin N Am 2015; 25:123-45. [PMID: 25442963 DOI: 10.1016/j.giec.2014.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acute gastrointestinal bleeding is a common cause for hospitalization. Endoscopic hemostasis plays a central role in the management of lesions with active bleeding or high-risk stigmata for rebleeding. The efficacy and safety of endoscopic hemostasis rely on the identification of lesions suitable for endoscopic therapy, selection of the appropriate hemostatic devices, attention to technique, and prompt recognition and management of procedure-related adverse events. In this article, practical applications of hemostatic devices and pitfalls related to endoscopic hemostasis are discussed.
Collapse
Affiliation(s)
- Nayantara Coelho Prabhu
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA
| | - Louis M Wong Kee Song
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Song LMWK, Levy MJ. Emerging endoscopic therapies for nonvariceal upper gastrointestinal bleeding. Gastroenterol Clin North Am 2014; 43:721-37. [PMID: 25440921 DOI: 10.1016/j.gtc.2014.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Several new devices and innovative adaptations of existing modalities have emerged as primary, adjunctive, or rescue therapy in endoscopic hemostasis of gastrointestinal hemorrhage. These techniques include over-the-scope clip devices, hemostatic sprays, cryotherapy, radiofrequency ablation, endoscopic suturing, and endoscopic ultrasound-guided angiotherapy. This review highlights the technical aspects and clinical applications of these devices in the context of nonvariceal upper gastrointestinal bleeding.
Collapse
Affiliation(s)
- Louis M Wong Kee Song
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| | - Michael J Levy
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Gentili ME. Toothpaste and shaving-induced bleeding and moreover…. Am J Emerg Med 2014; 32:1428-9. [DOI: 10.1016/j.ajem.2014.08.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022] Open
|
38
|
Behrens AM, Sikorski MJ, Kofinas P. Hemostatic strategies for traumatic and surgical bleeding. J Biomed Mater Res A 2013; 102:4182-94. [PMID: 24307256 DOI: 10.1002/jbm.a.35052] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/18/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
Wide interest in new hemostatic approaches has stemmed from unmet needs in the hospital and on the battlefield. Many current commercial hemostatic agents fail to fulfill the design requirements of safety, efficacy, cost, and storage. Academic focus has led to the improvement of existing strategies as well as new developments. This review will identify and discuss the three major classes of hemostatic approaches: biologically derived materials, synthetically derived materials, and intravenously administered hemostatic agents. The general class is first discussed, then specific approaches discussed in detail, including the hemostatic mechanisms and the advancement of the method. As hemostatic strategies evolve and synthetic-biologic interactions are more fully understood, current clinical methodologies will be replaced.
Collapse
Affiliation(s)
- Adam M Behrens
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland, 20742
| | | | | |
Collapse
|
39
|
Gebauer S, Hoopes D, Finlay E. From the battlefield to the palliative care arsenal: application of QuickClot Combat Gauze for aggressive palliation of hemorrhagic shock in the setting of end-stage liver disease-associated compartment syndrome. J Pain Symptom Manage 2013; 46:e6-8. [PMID: 24103475 DOI: 10.1016/j.jpainsymman.2013.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/24/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Sarah Gebauer
- Department of Anesthesiology and Critical Care Medicine, Palliative Care Team, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| | | | | |
Collapse
|
40
|
Hattori H, Amano Y, Nogami Y, Kawakami M, Yura H, Ishihara M. Development of a Novel Emergency Hemostatic Kit for Severe Hemorrhage. Artif Organs 2013; 37:475-81. [DOI: 10.1111/aor.12004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hidemi Hattori
- Division of Biomedical Engineering; Research Institute; National Defense Medical College; Tokorozawa
| | - Yoshiko Amano
- Division of Biomedical Engineering; Research Institute; National Defense Medical College; Tokorozawa
| | - Yashiro Nogami
- Aeromedical Laboratory; Air Development and Test Command, Japan Air Self-Defense Force; Iruma; Saitama
| | | | | | - Masayuki Ishihara
- Division of Biomedical Engineering; Research Institute; National Defense Medical College; Tokorozawa
| |
Collapse
|
41
|
Initial evaluation of a nano-engineered hemostatic agent in a severe vascular and organ hemorrhage swine model. J Trauma Acute Care Surg 2013; 73:1180-7. [PMID: 22914081 DOI: 10.1097/ta.0b013e31825b3a60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES An advanced hemostatic dressing, Rapid Trauma Hemostat (RTH), was developed using nano-engineered inorganic nanofibers with hemostatic surface properties. METHODS Yorkshire swine were treated with RTH or Combat Gauze (CBG) to stop bleeding from either an arterial puncture (G-RTH and G-CBG) or a liver lobe laceration (L-RTH and L-CBG). All animals received 500 mL of Hextend at 10 minutes after injury and were monitored for a total time of 180 minutes. RESULTS Uncontrolled hemorrhage was similar in all animals in both models and was immediately controlled with the application of either dressing. After blood pressure was restored with fluid resuscitation, the RTH hemostatic treatment was less effective than CBG in the groin (puncture) model (rebleeding incidence, four of seven for G-RTH vs. one of seven for G-CBG; p = 0.034) but showed similar efficacy in the liver injury model (lower pressure bleeding). Interestingly, RTH exhibited a trend for higher efficacy in terms of hemostatic plug formation at the end of the experiment (no bleeding occurred after dressing removal) in the liver injury model. CONCLUSION Overall, RTH was not as effective at stopping high-shear rate (arterial) bleeding, but it presented some advantages for intracavitary treatment with potential for long-term evacuation.
Collapse
|
42
|
Travers S, Dubourg O, Ribeiro Parenti L, Lefort H, Albarello S, Domanski L. Utilisation en préhospitalier d’un pansement hémostatique QuikClot ACS+™ pour le contrôle d’une hémorragie sur délabrement périnéal post-traumatique. ACTA ACUST UNITED AC 2012; 31:969-71. [DOI: 10.1016/j.annfar.2012.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
|
43
|
|
44
|
Wong Kee Song LM, Banerjee S, Barth BA, Bhat Y, Desilets D, Gottlieb KT, Maple JT, Pfau PR, Pleskow DK, Siddiqui UD, Tokar JL, Wang A, Rodriguez SA. Emerging technologies for endoscopic hemostasis. Gastrointest Endosc 2012; 75:933-7. [PMID: 22445927 DOI: 10.1016/j.gie.2012.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 02/08/2023]
|
45
|
Fedor PJ. Novel Use of a Hemostatic Dressing in the Management of a Bleeding Leech Bite: A Case Report and Review of the Literature. Wilderness Environ Med 2012; 23:44-8. [DOI: 10.1016/j.wem.2011.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/15/2011] [Accepted: 10/20/2011] [Indexed: 11/24/2022]
|
46
|
Thirty consecutive uses of a hemostatic bandage at a US Army combat support hospital and forward surgical team in Operation Iraqi Freedom. ACTA ACUST UNITED AC 2012; 71:1775-8. [PMID: 22182888 DOI: 10.1097/ta.0b013e3182231615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Topical hemostatic agents have generated intense research interest in recent years, prompted in part by the demands of wartime medicine. Numerous animal studies demonstrate variable degrees of efficacy of a variety of agents; however, little clinical data are available in severely traumatized patients. This report describes 30 consecutive uses of the modified rapid deployment hemostat (MRDH) during combat operations in Operation Iraqi Freedom. METHODS In a prospective observational fashion, traumatized patients presenting to a combat support hospital or a forward surgical team with difficult to control hemorrhage (due to anatomy, limited resources, or tactical environment) had the MRDH applied to severely bleeding wounds. Basic demographics, wounding mechanism, wound characteristics, circumstances, and efficacy were recorded. Presence of a clinical coagulopathy was also noted. RESULTS Thirty hemostatic bandages were applied to 19 patients with a wide variety of wounds. All but one application occurred in the operating room. The demographics were mean age 27 years (range, 9-55 years), 95% male, 68% penetrating or fragmentation, and four casualties had a clinical coagulopathy. Hemostasis was achieved following application of the hemostatic agent in 16 of 19 wounds. Rebleeding occurred upon removal in three cases. In all cases, the patient failed conventional interventions at hemostasis before the hemostat was applied. CONCLUSIONS This is the single largest description of the clinical efficacy of the MRDH and the first description during combat operations. The MRDH bandage was an effective hemostat for temporarily controlling hemorrhage in difficult circumstances. Caution should be exercised when removing the dressing as rebleeding may occur.
Collapse
|