1
|
Wan Y, Wang C, Zhang B, Liu Y, Yang H, Liu F, Xu J, Xu S. Biocompatible Electrical and Optical Interfaces for Implantable Sensors and Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:3799. [PMID: 38931581 PMCID: PMC11207811 DOI: 10.3390/s24123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Implantable bioelectronics hold tremendous potential in the field of healthcare, yet the performance of these systems heavily relies on the interfaces between artificial machines and living tissues. In this paper, we discuss the recent developments of tethered interfaces, as well as those of non-tethered interfaces. Among them, systems that study neural activity receive significant attention due to their innovative developments and high relevance in contemporary research, but other functional types of interface systems are also explored to provide a comprehensive overview of the field. We also analyze the key considerations, including perforation site selection, fixing strategies, long-term retention, and wireless communication, highlighting the challenges and opportunities with stable, effective, and biocompatible interfaces. Furthermore, we propose a primitive model of biocompatible electrical and optical interfaces for implantable systems, which simultaneously possesses biocompatibility, stability, and convenience. Finally, we point out the future directions of interfacing strategies.
Collapse
Affiliation(s)
- Yuxin Wan
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Caiyi Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China (J.X.)
| | - Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yixuan Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Hailong Yang
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Fengyu Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Jingjing Xu
- School of Integrated Circuits, Shandong University, Jinan 250100, China (J.X.)
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Liu X, Deng S, Li X, Liu H, Li Z, Wu Y, Luo P, Zhong X, Huang R, Liu R, Wu X, Huang B, Chen Z, Chen Z, Chen S. A Standardized Rat Model to Study Peri-implantitis of Transmucosal Osseointegrated Implants. Biomater Res 2024; 28:0021. [PMID: 38828365 PMCID: PMC11142924 DOI: 10.34133/bmr.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024] Open
Abstract
With the high incidence rate, distinctive implant characteristic and unique infection pattern, peri-implantitis (PI) requires a specially designed implant animal model for the researches on the pathogenesis and treatments. Previous small-animal PI models exhibit variability in implant site selection, design, and surgical procedures resulting in unnecessary tissue damage and less effectivity. Herein, a quantitative-analysis-based standardized rat model for transmucosal PI-related research was proposed. After dissecting the anatomic structures of the rat maxilla, we determined that placing the implant anterior to the molars in the rat maxilla streamlined the experimental period and enhanced animal welfare. We standardized the model by controlling the rat strain, gender, and size. The customized implant and a series of matched surgical instruments were appropriately designed. A clear, step-by-step surgical process was established. These designs ensured the success rate, stability, and replicability of the model. Each validation method confirmed the successful construction of the model. This study proposed a quantitative-analysis-based standardized transmucosal PI rat model with improved animal welfare and reliable procedures. This model could provide efficient in vivo insights to study the pathogenesis and treatments of PI and preliminary screening data for further large-animal and clinical trials.
Collapse
Affiliation(s)
- Xingchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Shudan Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xiyan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Haiwen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
- Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhixin Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - You Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Pu Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xinyi Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruoxuan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Runheng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xiayi Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Baoxin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
3
|
Safaei M, Mohammadi H, Beddu S, Mozaffari HR, Rezaei R, Sharifi R, Moradpoor H, Fallahnia N, Ebadi M, Md Jamil MS, Md Zain AR, Yusop MR. Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant. Int J Nanomedicine 2024; 19:4835-4856. [PMID: 38828200 PMCID: PMC11141758 DOI: 10.2147/ijn.s461549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.
Collapse
Affiliation(s)
- Mohsen Safaei
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Biomaterials Research Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, 14300, Malaysia
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Salmia Beddu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Rezaei
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Fallahnia
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Ebadi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Mohd Suzeren Md Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
4
|
Suh K, Cho YK, Breinyn IB, Cohen DJ. E-cadherin biomaterials reprogram collective cell migration and cell cycling by forcing homeostatic conditions. Cell Rep 2024; 43:113743. [PMID: 38358889 DOI: 10.1016/j.celrep.2024.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Cells attach to the world through either cell-extracellular matrix adhesion or cell-cell adhesion, and traditional biomaterials imitate the matrix for integrin-based adhesion. However, materials incorporating cadherin proteins that mimic cell-cell adhesion offer an alternative to program cell behavior and integrate into living tissues. We investigated how cadherin substrates affect collective cell migration and cell cycling in epithelia. Our approach involved biomaterials with matrix proteins on one-half and E-cadherin proteins on the other, forming a "Janus" interface across which we grew a single sheet of cells. Tissue regions over the matrix side exhibited normal collective dynamics, but an abrupt behavior shift occurred across the Janus boundary onto the E-cadherin side, where cells attached to the substrate via E-cadherin adhesions, resulting in stalled migration and slowing of the cell cycle. E-cadherin surfaces disrupted long-range mechanical coordination and nearly doubled the length of the G0/G1 phase of the cell cycle, linked to the lack of integrin focal adhesions on the E-cadherin surface.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Youn Kyoung Cho
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Suh K, Cho YK, Breinyn IB, Cohen DJ. E-cadherin biointerfaces reprogram collective cell migration and cell cycling by forcing homeostatic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550505. [PMID: 37546933 PMCID: PMC10402016 DOI: 10.1101/2023.07.25.550505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cells attach to the world around them in two ways-cell:extracellular-matrix adhesion and cell:cell adhesion-and conventional biomaterials are made to resemble the matrix to encourage integrin-based cell adhesion. However, interest is growing for cell-mimetic interfaces that mimic cell-cell interactions using cadherin proteins, as this offers a new way to program cell behavior and design synthetic implants and objects that can integrate directly into living tissues. Here, we explore how these cadherin-based materials affect collective cell behaviors, focusing specifically on collective migration and cell cycle regulation in cm-scale epithelia. We built culture substrates where half of the culture area was functionalized with matrix proteins and the contiguous half was functionalized with E-cadherin proteins, and we grew large epithelia across this 'Janus' interface. Parts of the tissues in contact with the matrix side of the Janus interface exhibited normal collective dynamics, but an abrupt shift in behaviors happened immediately across the Janus boundary onto the E-cadherin side, where cells formed hybrid E-cadherin junctions with the substrate, migration effectively froze in place, and cell-cycling significantly decreased. E-cadherin materials suppressed long-range mechanical correlations in the tissue and mechanical information reflected off the substrate interface. These effects could not be explained by conventional density, shape index, or contact inhibition explanations. E-cadherin surfaces nearly doubled the length of the G0/G1 phase of the cell cycle, which we ultimately connected to the exclusion of matrix focal adhesions induced by the E-cadherin culture surface.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA, 08544
| | - Youn Kyoung Cho
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA, 08544
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA, 08544
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA, 08544
| |
Collapse
|
6
|
Zhang Y, Yang C, Yin S, Zhang X, Peng X, Li G. Exploration of 2D and 2.5D Conformational Designs Applied on Epoxide/Collagen-Based Integrative Biointerfaces with Device/Tissue Heterogeneous Affinity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22876-22891. [PMID: 37144968 DOI: 10.1021/acsami.3c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Collagen and multifunctional epoxides, which are respectively the common constituents of natural and polymer interfaces, were combined to fabricate integrative biointerfaces with device/tissue heterogeneous affinity. Further, the traditional 2D and advanced 2.5D conformational designs were achieved on collagen-based biointerfaces. The 2D conformational biointerfaces were formed by the self-entanglement of collagen molecules based on extensive hydrogen bonds among molecules, and the lamellar structures of 2D conformational biointerfaces could act as barriers to protect both biointerfaces and substrates from enzymes and corrosion. The unique stacking structures of 2.5D conformational biointerfaces were formed by cross-linking microaggregates that were established and connected by epoxy cross-linking bonds and provided the extra 0.5D degree of freedom on structure design and functional specialization through artificially manipulating the constituents and density of microaggregates. Besides, the intersecting channels among microaggregates gave 2.5D biointerfaces diffusion behaviors, which further brought good wettability and biodegradability. The integrative biointerfaces behaved well on cell viability and enhanced the cell adhesion strength in vitro, which could be attributed to the collaborations of collagen and epoxy groups. The subcutaneous implant model in rats was utilized to investigate soft tissue response, and the results demonstrated that the tissues around implantation areas healed well and without calcification or infection. The coating of integrative biointerfaces alleviated the fibrosis around implantation areas, and the inflammatory responses and foreign body reactions were improved.
Collapse
Affiliation(s)
- Yuanzhi Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Changkai Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Simiao Yin
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Guoying Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| |
Collapse
|
7
|
Padulles-Gaspar E, Padulles-Roig E, Cabanes G, Pérez RA, Gil J, Bosch BM. Effects of Hypochlorous Acid and Hydrogen Peroxide Treatment on Bacterial Disinfection Treatments in Implantoplasty Procedures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2953. [PMID: 37109795 PMCID: PMC10144543 DOI: 10.3390/ma16082953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
One of the main problems in oral implantology today is peri-implantitis, which affects almost 20% of dental implants placed in patients. One of the most commonly used techniques to eliminate bacterial biofilm is the implantoplasty, that consists of the mechanical modification of the implant surface topography followed by treatments with chemical reagents for decontamination. In this study, the main aim is to evaluate the use of two different chemical treatments based on hypochlorous acid (HClO) and hydrogen peroxide (H2O2). For this purpose, 75 titanium grade 3 discs were treated with implantoplasty according to established protocols. Twenty-five discs were used as controls, 25 were treated with concentrated HClO and 25 were treated with concentrated HClO followed by treatment with 6% H2O2. The roughness of the discs was determined using the interferometric process. Cytotoxicity with SaOs-2 osteoblastic cells was quantified at 24 and 72 h, whereas bacteria proliferation using S. gordonii and S. oralis bacteria was quantified at 5 s and 1 min of treatment. The results showed an increase in the roughness values, the control discs had an Ra of 0.33 μm and those treated with HClO and H2O2 reached 0.68 μm. Cytotoxicity was present at 72 h, together with a significant proliferation of bacteria. These biological and microbiological results can be attributed to the roughness produced by the chemical agents that triggered bacterial adsorption while inhibiting osteoblast adhesion. The results indicate that even if this treatment can decontaminate the titanium surface after implantation, the produced topography will generate an environment that will not favor long-term performance.
Collapse
Affiliation(s)
- Esteban Padulles-Gaspar
- Facultad de Odontología, Universitat Internacional de Catalunya, C/Josep Trueta s/n, 08195 Barcelona, Spain
| | - Esteban Padulles-Roig
- Department of Implantology, University of La Salle, Madrid, EDE, C7Gaminedes 11, 28023 Madrid, Spain
| | - Guillermo Cabanes
- Department of Implantology, University of La Salle, Madrid, EDE, C7Gaminedes 11, 28023 Madrid, Spain
| | - Román A. Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
8
|
Chen S, Huang Z, Visalakshan RM, Liu H, Bachhuka A, Wu Y, Dabare PRL, Luo P, Liu R, Gong Z, Xiao Y, Vasilev K, Chen Z, Chen Z. Plasma polymerized bio-interface directs fibronectin adsorption and functionalization to enhance "epithelial barrier structure" formation via FN-ITG β1-FAK-mTOR signaling cascade. Biomater Res 2022; 26:88. [PMID: 36572920 PMCID: PMC9791785 DOI: 10.1186/s40824-022-00323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transepithelial medical devices are increasing utilized in clinical practices. However, the damage of continuous natural epithelial barrier has become a major risk factor for the failure of epithelium-penetrating implants. How to increase the "epithelial barrier structures" (focal adhesions, hemidesmosomes, etc.) becomes one key research aim in overcoming this difficulty. Directly targeting the in situ "epithelial barrier structures" related proteins (such as fibronectin) absorption and functionalization can be a promising way to enhance interface-epithelial integration. METHODS Herein, we fabricated three plasma polymerized bio-interfaces possessing controllable surface chemistry. Their capacity to adsorb and functionalize fibronectin (FN) from serum protein was compared by Liquid Chromatography-Tandem Mass Spectrometry. The underlying mechanisms were revealed by molecular dynamics simulation. The response of gingival epithelial cells regarding the formation of epithelial barrier structures was tested. RESULTS Plasma polymerized surfaces successfully directed distinguished protein adsorption profiles from serum protein pool, in which plasma polymerized allylamine (ppAA) surface favored adsorbing adhesion related proteins and could promote FN absorption and functionalization via electrostatic interactions and hydrogen bonds, thus subsequently activating the ITG β1-FAK-mTOR signaling and promoting gingival epithelial cells adhesion. CONCLUSION This study offers an effective perspective to overcome the current dilemma of the inferior interface-epithelial integration by in situ protein absorption and functionalization, which may advance the development of functional transepithelial biointerfaces. Tuning the surface chemistry by plasma polymerization can control the adsorption of fibronectin and functionalize it by exposing functional protein domains. The functionalized fibronectin can bind to human gingival epithelial cell membrane integrins to activate epithelial barrier structure related signaling pathway, which eventually enhances the formation of epithelial barrier structure.
Collapse
Affiliation(s)
- Shoucheng Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuwei Huang
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | | | - Haiwen Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Akash Bachhuka
- grid.410367.70000 0001 2284 9230Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), Tarragona, 43003 Spain
| | - You Wu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Panthihage Ruvini L. Dabare
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Pu Luo
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Runheng Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuohong Gong
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Yin Xiao
- grid.1024.70000000089150953Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Australia
| | - Krasimir Vasilev
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Zhuofan Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zetao Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| |
Collapse
|
9
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
10
|
Determining the Antibiofilm Efficacy of Oregano Gel in an Ex Vivo Model of Percutaneous Osseointegrated Implants. Microorganisms 2022; 10:microorganisms10112133. [DOI: 10.3390/microorganisms10112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Biofilm contamination is common in patients with percutaneous osseointegrated (OI) implants, leading to frequent infections, irritation, and discomfort. Reported infection rates soar up to 65% as the recalcitrant nature of biofilms complicates treatment. There is persistent need for therapies to manage biofilm burden. In response, we formulated and tested oregano essential oil in a topical gel as a potential biofilm management therapy. We developed an ex vivo system based on an established ovine OI implant model with Staphylococcus aureus ATCC 6538 biofilms as initial inocula. Gel was administered to the samples across a period of five days. Samples were quantified and colony forming unit (CFU) counts were compared against a positive control (initial bacterial inocula without treatment). Significant biofilm reduction was observed in samples treated with oregano gel compared to controls, demonstrating the potential of an oregano oil-based gel as a biofilm management therapy at the skin-implant interface of percutaneous OI implants.
Collapse
|
11
|
Sun H, Yu P, Peng X, Meng L, Qin M, Xu X, Li J. Inspired by the Periodontium: A Universal Bacteria-Defensive Hydrogel for Preventing Percutaneous Device-Related Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50424-50433. [PMID: 36282568 DOI: 10.1021/acsami.2c15478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Percutaneous device-related infection has greatly shortened the service period of devices and seriously reduced the quality of life of patients. Bacteria are one of the main pathogenic factors and cannot be effectively and conveniently eradicated by traditional strategies (e.g., construct coatings and introduce antibiotics), due to the complex interface among medical devices, surrounding tissue, and colonizing bacteria. Inspired by the periodontium, a universal bacteria-defensive hydrogel adapting to the complicated interface is fabricated by introducing phenol-amine chemistry to a polymeric matrix of N-hydroxyethyl acrylamide (HPC hydrogels). The HPC hydrogels with excellent toughness (2.1 MJ/m3), adhesion (10.2 and 13.2 kPa for pigskin and Ti-6Al-4V alloy, respectively), and antibacterial property (up to 99.9% for both Escherichia coli and Staphylococcus aureus) contributed to the innate microbe barrier via sealing the tissue-device interface and adaptive defense to eradicate bacteria. Meanwhile, bacterial invasion experiments demonstrate HPC hydrogels possess both a bacteria-defensive property (up to 24 h) and cell-protecting function at the same time. Furthermore, the biocompatibility of HPC hydrogels is verified in tests for in vitro cytotoxicity and in vivo irritation. Hence, the designed HPC hydrogels are considered as an emerging and universal candidate for preventing bacterial infection and can protect the deep tissue around a percutaneous device.
Collapse
Affiliation(s)
- Hui Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Lingzhuang Meng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610061, China
| |
Collapse
|
12
|
Fischer NG, Kobe AC, Dai J, He J, Wang H, Pizarek JA, De Jong DA, Ye Z, Huang S, Aparicio C. Tapping basement membrane motifs: Oral junctional epithelium for surface-mediated soft tissue attachment to prevent failure of percutaneous devices. Acta Biomater 2022; 141:70-88. [PMID: 34971784 PMCID: PMC8898307 DOI: 10.1016/j.actbio.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
Teeth, long-lasting percutaneous organs, feature soft tissue attachment through adhesive structures, hemidesmosomes, in the junctional epithelium basement membrane adjacent to teeth. This soft tissue attachment prevents bacterial infection of the tooth despite the rich - and harsh - microbial composition of the oral cavity. Conversely, millions of percutaneous devices (catheters, dental, and orthopedic implants) fail from infection yearly. Standard of care antibiotic usage fuels antimicrobial resistance and is frequently ineffective. Infection prevention strategies, like for dental implants, have failed in generating durable soft tissue adhesion - like that seen with the tooth - to prevent bacterial colonization at the tissue-device interface. Here, inspired by the impervious natural attachment of the junctional epithelium to teeth, we synthesized four cell adhesion peptide (CAPs) nanocoatings, derived from basement membranes, to promote percutaneous device soft tissue attachment. The two leading nanocoatings upregulated integrin-mediated hemidesmosomes, selectively increased keratinocyte proliferation compared to fibroblasts, which cannot form hemidesmosomes, and expression of junctional epithelium adhesive markers. CAP nanocoatings displayed marked durability under simulated clinical conditions and the top performer CAP nanocoating was validated in a percutaneous implant murine model. Basement membrane CAP nanocoatings, inspired by the tooth and junctional epithelium, may provide an alternative anti-infective strategy for percutaneous devices to mitigate the worldwide threat of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: Prevention and management of medical device infection is a significant healthcare challenge. Overzealous antibiotic use has motivated alternative material innovations to prevent infection. Here, we report implant cell adhesion peptide nanocoatings that mimic a long-lasting, natural "medical device," the tooth, through formation of cell adhesive structures called hemidesmosomes. Such nanocoatings sidestep the use of antimicrobial or antibiotic elements to form a soft-tissue seal around implants. The top performing nanocoatings prompted expression of hemidesmosomes and defensive factors to mimic the tooth and was validated in an animal model. Application of cell adhesion peptide nanocoatings may provide an alternative to preventing, rather that necessarily treating, medical device infection across a range of device indications, like dental implants.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Alexandra C Kobe
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Jinhong Dai
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Hongning Wang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, United States
| | - David A De Jong
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Zhou Ye
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States.
| |
Collapse
|
13
|
Miranda A, Seyer D, Palomino-Durand C, Morakchi-Goudjil H, Massonie M, Agniel R, Rammal H, Pauthe E, Gand A. Poly-L-Lysine and Human Plasmatic Fibronectin Films as Proactive Coatings to Improve Implant Biointegration. Front Bioeng Biotechnol 2022; 9:807697. [PMID: 35111738 PMCID: PMC8801876 DOI: 10.3389/fbioe.2021.807697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The success of stable and long-term implant integration implies the promotion, control, and respect of the cell microenvironment at the site of implantation. The key is to enhance the implant–host tissue cross talk by developing interfacial strategies that guarantee an optimal and stable seal of soft tissue onto the implant, while preventing potential early and late infection. Indeed, implant rejection is often jeopardized by lack of stable tissue surrounding the biomaterial combined with infections which reduce the lifespan and increase the failure rate of implants and morbidity and account for high medical costs. Thin films formed by the layer-by-layer (LbL) assembly of oppositely charged polyelectrolytes are particularly versatile and attractive for applications involving cell–material contact. With the combination of the extracellular matrix protein fibronectin (Fn, purified from human plasma) and poly-L-lysine (PLL, exhibiting specific chain lengths), we proposed proactive and biomimetic coatings able to guarantee enhanced cell attachment and exhibiting antimicrobial properties. Fn, able to create a biomimetic interface that could enhance cell attachment and promote extracellular cell matrix remodeling, is incorporated as the anionic polymer during film construction by the LbL technic whereas PLL is used as the cationic polymer for its capacity to confer remarkable antibacterial properties.
Collapse
Affiliation(s)
- Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Carla Palomino-Durand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Houda Morakchi-Goudjil
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Mathilde Massonie
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Hassan Rammal
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- EFOR Healthcare Paris, Biocompatibility Platform, Levallois-Perret, France
| | - Emmanuel Pauthe
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| | - Adeline Gand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| |
Collapse
|
14
|
Sartori M, Borsari V, Maglio M, Brogini S, Bragonzoni L, Zaffagnini S, Fini M. Skin adhesion to the percutaneous component of direct bone anchored systems: systematic review on preclinical approaches and biomaterials. Biomater Sci 2021; 9:7008-7023. [PMID: 34549759 DOI: 10.1039/d1bm00707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Nowadays, direct bone anchored systems are an increasingly adopted approach in the therapeutic landscape for amputee patients. However, the percutaneous nature of these devices poses a major challenge to obtain a stable and lasting proper adhesion between the implant surface and the skin. A systematic review was carried out in three databases (PubMed, Scopus, Web of Science) to provide an overview of the innovative strategies tested with preclinical models (in vitro and in vivo) in the last ten years to improve the skin adhesion of direct bone anchored systems. Fifty five articles were selected after screening, also employing PECO question and inclusion criteria. A modified Cochrane RoB 2.0 tool for the in vitro studies and the SYRCLE tool for in in vivo studies were used to assess the risk of bias. The evidence collected suggests that the implementation of porous percutaneous structures could be one of the most favorable approach to improve proper skin adhesion, especially in association with bioactive coatings, as hydroxyapatite, and exploiting the field of nanostructure. Some issues still remain open as (a) the identification and characterization of the best material/coating association able to limit the shear stresses at the interface and (b) the role of keratinocyte turnover on the skin/biomaterial adhesion and integration processes.
Collapse
Affiliation(s)
- Maria Sartori
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Veronica Borsari
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Melania Maglio
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Silvia Brogini
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Laura Bragonzoni
- University of Bologna - Department for Life Quality Studies, Bologna, Italy
| | - Stefano Zaffagnini
- IRCCS - Istituto Ortopedico Rizzoli, II Orthopaedic and Traumatologic Clinic, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Milena Fini
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
15
|
Verza BS, van den Beucken JJJP, Brandt JV, Jafelicci Junior M, Barão VAR, Piazza RD, Tagit O, Spolidorio DMP, Vergani CE, de Avila ED. A long-term controlled drug-delivery with anionic beta cyclodextrin complex in layer-by-layer coating for percutaneous implants devices. Carbohydr Polym 2021; 257:117604. [PMID: 33541637 DOI: 10.1016/j.carbpol.2020.117604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
This study demonstrated a drug-delivery system with anionic beta cyclodextrin (β-CD) complexes to retain tetracycline (TC) and control its release from multilayers of poly(acrylic acid) (PAA) and poly(l-lysine) (PLL) in a ten double layers ([PAA/PLL]10) coating onto titanium. The drug-delivery capacity of the multilayer system was proven by controlled drug release over 15 days and sustained released over 30 days. Qualitative images confirmed TC retention within the layer-by-layer (LbL) over 30 days of incubation. Antibacterial activity of TC/anionic β-CD released from the LbL was established against Staphylococcus aureus species. Remarkably, [PAA/PLL]10/TC/anionic β-CD antibacterial effect was sustained even after 30 days of incubation. The non-cytotoxic effect of the multilayer system revealed normal human gingival fibroblast growth. It is expected that this novel approach and the chemical concept to improve drug incorporation into the multilayer system will open up possibilities to make the drug release system more applicable to implantable percutaneous devices.
Collapse
Affiliation(s)
- Beatriz S Verza
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| | | | - João V Brandt
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Miguel Jafelicci Junior
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil.
| | - Rodolfo D Piazza
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Oya Tagit
- Department of Tumor Immunology, Radboudumc and Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid, 28 Nijmegen, the Netherlands.
| | - Denise M P Spolidorio
- Department of Physiology and Pathology, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-903, Brazil.
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| |
Collapse
|
16
|
Zhang R, Teramura Y, Fukazawa K, Ishihara K. Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromol Biosci 2020; 20:e2000114. [PMID: 32567166 DOI: 10.1002/mabi.202000114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Construction of 3D tissues by various types of cells with specific characteristics is an important and fundamental technology in tissue reconstruction medicine and animal-free diagnosis system. To do so, an excellent extracellular matrix (ECM) is needed for encapsulation of cells and maintaining cell activity. Spontaneously forming hydrogel matrix is used by complexation between two water-soluble polymers, 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups and poly(vinyl alcohol). Two cytokines for cell proliferation are immobilized in the hydrogel matrix to control the activities of the encapsulated cells. The cytokine-immobilized hydrogel matrix can encapsulate both L929 fibroblasts and normal human dermal fibroblasts under mild condition. The physical properties of the hydrogel matrix can follow the proliferation process of the encapsulated cells. The encapsulated cells secrete ECM in the polymer hydrogel networks upon 3D culturing for 7 days. Consequently, the tissue-mimicking ECM hybrid hydrogels are fabricated successfully.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan.,Department of Immunology, Genetics, and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, Uppsala, SE-751 85, Sweden
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan.,Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| |
Collapse
|
17
|
Bolle ECL, Verderosa AD, Dhouib R, Parker TJ, Fraser JF, Dargaville TR, Totsika M. An in vitro Reconstructed Human Skin Equivalent Model to Study the Role of Skin Integration Around Percutaneous Devices Against Bacterial Infection. Front Microbiol 2020; 11:670. [PMID: 32477277 PMCID: PMC7240036 DOI: 10.3389/fmicb.2020.00670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
Percutaneous devices are a key technology in clinical practice, used to connect internal organs to external medical devices. Examples include prosthesis, catheters and electrical drivelines. Percutaneous devices breach the skin's natural barrier and create an entry point for pathogens, making device infections a widespread problem. Modification of the percutaneous implant surface to increase skin integration with the aim to reduce subsequent infection is attracting a great deal of attention. While novel surfaces have been tested in various in vitro models used to study skin integration around percutaneous devices, no skin model has been reported, for the study of bacterial infection around percutaneous devices. Here, we report the establishment of an in vitro human skin equivalent model for driveline infections caused by Staphylococcus aureus, the most common cause of driveline-related infections. Three types of mock drivelines manufactured using melt electrowriting (smooth or porous un-seeded and porous pre-seeded with human fibroblasts) were implanted in human skin constructs and challenged with S. aureus. Our results show a high and stable load of S. aureus in association with the skin surface and no signs of S. aureus-induced tissue damage. Furthermore, our results demonstrate that bacterial migration along the driveline surface occurs in micro-gaps caused by insufficient skin integration between the driveline and the surrounding skin consistent with clinical reports from explanted patient drivelines. Thus, the human skin-driveline infection model presented here provides a clinically-relevant and versatile experimental platform for testing novel device surfaces and infection therapeutics.
Collapse
Affiliation(s)
- Eleonore C. L. Bolle
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- The Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Anthony D. Verderosa
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rabeb Dhouib
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tony J. Parker
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John F. Fraser
- The Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Tim R. Dargaville
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Makrina Totsika
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Li K, Xue Y, Yan T, Zhang L, Han Y. Si substituted hydroxyapatite nanorods on Ti for percutaneous implants. Bioact Mater 2020; 5:116-123. [PMID: 32021946 PMCID: PMC6994265 DOI: 10.1016/j.bioactmat.2020.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
An ideal intraosseous transcutaneous implant should form a tight seal with soft tissue, besides a requirement of osseointegration at the bone-fixed position. Si substituted hydroxyapatite (Si-HA) nanorods releasing Si ion and simulating nanotopography of natural tissue were designed on Ti to enhance fibroblast response in vitro and biosealing with soft tissue in vivo. Si-HA nanorods were fabricated by alkali-heat treatment followed with hydrothermal treatment. The hydrothermal formation mechanism of Si-HA nanorods was explored. The surface characteristic of Si-HA nanorods was compared with pure HA nanorods. Fibroblast behaviors in vitro and skin response in vivo on different surfaces were also evaluated. The obtained results show that the substitution of Si did not significantly alter the phase component, morphology, roughness and wettability of HA, but additional Si and more Ca were released from Si-HA into medium. Comparing to pure HA nanrods and Ti substrate, Si-HA nanrods enhanced cell behaviors including proliferation, fibrotic phenotype and collagen secretion in vitro, and reduced epithelial down growth in vivo. The enhanced cell response and biosealing should be due to the releasing of Ca, Si and nanotopography of Si-HA nanorods. Si-HA nanorods can be a potential coating to accelerate skin integration for percutaneous implants in clinic.
Collapse
Affiliation(s)
| | | | | | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
19
|
E-cadherin mediated cell-biomaterial interaction reduces migration of keratinocytes in-vitro. Colloids Surf B Biointerfaces 2019; 180:326-333. [DOI: 10.1016/j.colsurfb.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
|
20
|
Zhu Y, Liu D, Wang X, He Y, Luan W, Qi F, Ding J. Polydopamine-mediated covalent functionalization of collagen on a titanium alloy to promote biocompatibility with soft tissues. J Mater Chem B 2019; 7:2019-2031. [PMID: 32254806 DOI: 10.1039/c8tb03379j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The clinical success of a titanium (Ti) percutaneous implant requires the integration with soft tissues to form a biological seal, which effectively combats marsupialization, premigration and infection after implantation. However, the bioinert surface of Ti or its alloys prevents the material from sufficient biological sealing and limits the application of Ti or its alloys as percutaneous implants. In this study, we achieved a collagen coating to bioactivate the surface of Ti-6Al-4V. In order to enable covalent functionalization, we first deposited a polydopamine (PDA) coating on Ti-6Al-4V based on dopamine self-polymerization and then immobilized collagen chains on PDA. Compared with physical absorption, such a chemical bonding method through mussel-inspired chemistry showed better stability of the coating. Meanwhile, the cellular tests in vitro indicated that collagen functionalization on the Ti-6Al-4V surface showed better adhesion of human foreskin fibroblasts (HFFs) and human immortal keratinocytes (HaCaTs). The subcutaneous implantation tests in rats indicated that the collagen modification attenuated soft tissue response and improved tissue compatibility compared with either pure Ti-6Al-4V or merely PDA coated samples. The facile bioinspired approach enables a persistent modification of metals by macromolecules under aqueous environments, and the PDA-collagen coated titanium alloy is worthy of further investigation as a percutaneous implant.
Collapse
Affiliation(s)
- Yi Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Adequate bone remodeling may be a primary parameter for long-term successful complication-free dental implant treatment. A 1.8-mm osseous thickness around dental implants is thought to be the minimum thickness for adequate vasculature for osteocyte nutrition and function. A dental implant does not provide progenitor cells or angiogenic or osteogenic factors. Thus, the surrounding bone may need to have a 1.8-mm thickness to accommodate the vasculature necessary for nutrients for appropriate remodeling. Additionally, the 1.8-mm dimension may provide for mechanical load resistance. There is no evidence to illustrate the physiologic need for the 1.8-mm dimension. This dimension requirement is based on clinical outcome observations. Basic science research for bone survival around dental implants is needed.
Collapse
|
22
|
Abdallah MN, Badran Z, Ciobanu O, Hamdan N, Tamimi F. Strategies for Optimizing the Soft Tissue Seal around Osseointegrated Implants. Adv Healthc Mater 2017; 6. [PMID: 28960892 DOI: 10.1002/adhm.201700549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Percutaneous and permucosal devices such as catheters, infusion pumps, orthopedic, and dental implants are commonly used in medical treatments. However, these useful devices breach the soft tissue barrier that protects the body from the outer environment, and thus increase bacterial infections resulting in morbidity and mortality. Such associated infections can be prevented if these devices are effectively integrated with the surrounding soft tissue, and thus creating a strong seal from the surrounding environment. However, so far, there are no percutaneous/permucosal medical devices able to prevent infection by achieving strong integration at the soft tissue-device interface. This review gives an insight into the current status of research into soft tissue-implant interface and the challenges associated with these interfaces. Biological soft/hard tissue interfaces may provide insights toward engineering better soft tissue interfaces around percutaneous devices. In this review, focus is put on the history and current findings as well as recent progress of the strategies aiming to develop a strong soft tissue seal around osseointegrated implants, such as orthopedic and dental implants.
Collapse
Affiliation(s)
- Mohamed-Nur Abdallah
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
- Division of Orthodontics; Faculty of Dentistry; Toronto University; Toronto M5G 1G6 ON Canada
| | - Zahi Badran
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
- Department of Periodontology (CHU/Rmes Inserm U1229/UIC11); Faculty of Dental Surgery; University of Nantes; Nantes 44042 France
| | - Ovidiu Ciobanu
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences; Faculty of Dentistry; Dalhousie University; Halifax B3H 4R2 NS Canada
| | - Faleh Tamimi
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
| |
Collapse
|
23
|
Abdallah MN, Tran SD, Abughanam G, Laurenti M, Zuanazzi D, Mezour MA, Xiao Y, Cerruti M, Siqueira WL, Tamimi F. Biomaterial surface proteomic signature determines interaction with epithelial cells. Acta Biomater 2017; 54:150-163. [PMID: 28259836 DOI: 10.1016/j.actbio.2017.02.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices. STATEMENT OF SIGNIFICANCE Failure of most biomaterials originates from the inability to predict and control the influence of their surface properties on biological phenomena, particularly protein adsorption, and cellular behaviour, which subsequently results in unfavourable host response. Here, we introduce a surface-proteomic screening approach using a label-free mass spectrometry technique to decipher the adsorption profile of extracellular matrix (ECM) proteins on different biomaterials, and correlate it with cellular behaviour. We demonstrated that the way a biomaterial selectively interacts with specific ECM proteins of a given tissue seems to determine the interactions between the cells of that tissue and biomaterials. Accordingly, this approach can potentially revolutionize the screening methods for investigating the protein-cell-biomaterial interactions and pave the way for deeper understanding of these interactions.
Collapse
|
24
|
Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction. Proc Natl Acad Sci U S A 2016; 113:14698-14703. [PMID: 27930308 DOI: 10.1073/pnas.1612208113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.
Collapse
|
25
|
Calliess T, Bartsch I, Haupt M, Reebmann M, Schwarze M, Stiesch M, Pfaffenroth C, Sluszniak M, Dempwolf W, Menzel H, Witte F, Willbold E. In vivo comparative study of tissue reaction to bare and antimicrobial polymer coated transcutaneous implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:712-9. [DOI: 10.1016/j.msec.2015.12.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 12/03/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
|
26
|
Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med 2014; 6:257re6. [PMID: 25298322 DOI: 10.1126/scitranslmed.3008933] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Max Ortiz-Catalan
- Division of Signal Processing and Biomedical Engineering, Department of Signals and Systems, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden. Center of Orthopaedic Osseointegration and Center of Advanced Reconstruction of Extremities, Department of Orthopaedics, Sahlgrenska University Hospital, University of Gothenburg, SE-431 80 Mölndal, Sweden.
| | - Bo Håkansson
- Division of Signal Processing and Biomedical Engineering, Department of Signals and Systems, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rickard Brånemark
- Center of Orthopaedic Osseointegration and Center of Advanced Reconstruction of Extremities, Department of Orthopaedics, Sahlgrenska University Hospital, University of Gothenburg, SE-431 80 Mölndal, Sweden
| |
Collapse
|
27
|
Okamoto E, Kikuchi S, Mitamura Y. Evaluation of titanium mesh electrode using for transcutaneous intrabody communication by tissue-electrode impedance. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:667-670. [PMID: 24109775 DOI: 10.1109/embc.2013.6609588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We developed a new transcutaneous communication system (TCS) that uses the human body as a conductive medium for monitoring and controlling an artificial heart and other implanted artificial organs in the body. The TCS is able to transmit data between everywhere on the surface of the body and everywhere inside the body, however poor contact between tissue and the electrode influences on communication performance. Thus in this study, we have developed a titanium mesh electrode for the internal transmission electrode. The titanium mesh electrode has advantages of histocompatibility and mechanical stable contact to the tissue by infiltration of the tissue into the titanium mesh like as an extracellular matrix. There titanium mesh electrodes were implanted separately into the dorsal region of the rats under the skin and the electrical performance of the titanium mesh electrode was evaluated by means of measuring the electrode-tissue boundary resistance. In vivo experimental results showed that the titanium mesh electrode had stable mechanical contact to tissue and lower electrode -tissue boundary resistance. In conclusion, the titanium mesh electrode showed excellent histocompatibility it realized stable contact to tissue as anchor, and it had superior electrical property. Thus the titanium mesh electrode is suitable for an internal electrode of the TCS to monitor artificial organs implanted into the body.
Collapse
|