1
|
Chen F, Sun M, Chen R, Li C, Shi J. Absolute Grüneisen parameter measurement in deep tissue based on X-ray-induced acoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:1205-1215. [PMID: 36950240 PMCID: PMC10026575 DOI: 10.1364/boe.483490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The Grüneisen parameter is a primary parameter of the initial sound pressure signal in the photoacoustic effect, which can provide unique biological information and is related to the temperature change information of an object. The accurate measurement of this parameter is of great significance in biomedical research. Combining X-ray-induced acoustic tomography and conventional X-ray computed tomography, we proposed a method to obtain the absolute Grüneisen parameter. The theory development, numerical simulation, and biomedical application scenarios are discussed. The results reveal that our method not only can determine the Grüneisen parameter but can also obtain the body internal temperature distribution, presenting its potential in the diagnosis of a broad range of diseases.
Collapse
Affiliation(s)
- Feng Chen
- Zhejiang Lab, Hangzhou 311121, China
| | | | | | - Chiye Li
- Zhejiang Lab, Hangzhou 311121, China
| | | |
Collapse
|
2
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
3
|
Jin Y, Yin Y, Li C, Liu H, Shi J. Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy. SENSORS 2022; 22:s22031155. [PMID: 35161900 PMCID: PMC8839463 DOI: 10.3390/s22031155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
For certain diseases, the continuous long-term monitoring of the physiological condition is crucial. Therefore, non-invasive monitoring methods have attracted widespread attention in health care. This review aims to discuss the non-invasive monitoring technologies for human health based on photoacoustic spectroscopy. First, the theoretical basis of photoacoustic spectroscopy and related devices are reported. Furthermore, this article introduces the monitoring methods for blood glucose, blood oxygen, lipid, and tumors, including differential continuous-wave photoacoustic spectroscopy, microscopic photoacoustic spectroscopy, mid-infrared photoacoustic detection, wavelength-modulated differential photoacoustic spectroscopy, and others. Finally, we present the limitations and prospects of photoacoustic spectroscopy.
Collapse
Affiliation(s)
- Yongyong Jin
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China;
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Yonggang Yin
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Chiye Li
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China;
- Correspondence: (H.L.); (J.S.)
| | - Junhui Shi
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
- Correspondence: (H.L.); (J.S.)
| |
Collapse
|
4
|
Regensburger AP, Brown E, Krönke G, Waldner MJ, Knieling F. Optoacoustic Imaging in Inflammation. Biomedicines 2021; 9:483. [PMID: 33924983 PMCID: PMC8145174 DOI: 10.3390/biomedicines9050483] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of "light in" and "sound out" offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.
Collapse
Affiliation(s)
- Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| | - Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Gerhard Krönke
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| |
Collapse
|
5
|
|
6
|
Xie Z, Yang Y, He Y, Shu C, Chen D, Zhang J, Chen J, Liu C, Sheng Z, Liu H, Liu J, Gong X, Song L, Dong S. In vivo assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Am J Cancer Res 2020; 10:4694-4704. [PMID: 32292523 PMCID: PMC7150488 DOI: 10.7150/thno.41211] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/15/2020] [Indexed: 01/22/2023] Open
Abstract
Objectives: The objective of this study was to demonstrate the feasibility of using noninvasive photoacoustic imaging technology along with novel semiconducting polymer nanoparticles for in vivo identifying inflammatory components in carotid atherosclerosis and assessing the severity of inflammation using mouse models. Methods and Results: Healthy carotid arteries and atherosclerotic carotid arteries were imaged in vivo by the noninvasive photoacoustic imaging system. Molecular probes PBD-CD36 were used to label the inflammatory cells to show the inflammation information by photoacoustic imaging. In in vivo imaging experiments, we observed the maximum photoacoustic signal enhancement of 4.3, 5.2, 8 and 16.3 times between 24 h post probe injection and that before probe injection in four carotid arteries belonging to three atherosclerotic mice models. In the corresponding carotid arteries stained with CD36, the ratio of 0.043, 0.061, 0.082 and 0.113 was found between CD36 positive (CD36(+)) expression area and intima-media area (P < 0.05). For the CD36(+) expression less than 0.008 in eight arteries, no photoacoustic signal enhancement was found due to the limited system sensitivity. The photoacoustic signal reflects CD36(+) expression in plaques, which shows the feasibility of using photoacoustic imaging for in vivo assessment of carotid atherosclerosis. Conclusion: This research demonstrates a semiconducting polymer nanoparticle along with photoacoustic technology for noninvasive imaging and assessment of inflammation of carotid atherosclerotic plaques in vivo.
Collapse
|
7
|
Hai P, Qu Y, Li Y, Zhu L, Shmuylovich L, Cornelius LA, Wang LV. Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-17. [PMID: 32170857 PMCID: PMC7069252 DOI: 10.1117/1.jbo.25.3.036002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Detection and characterization of circulating tumor cells (CTCs), a key determinant of metastasis, are critical for determining risk of disease progression, understanding metastatic pathways, and facilitating early clinical intervention. AIM We aim to demonstrate label-free imaging of suspected melanoma CTCs. APPROACH We use a linear-array-based photoacoustic tomography system (LA-PAT) to detect melanoma CTCs, quantify their contrast-to-noise ratios (CNRs), and measure their flow velocities in most of the superficial veins in humans. RESULTS With LA-PAT, we successfully imaged suspected melanoma CTCs in patients in vivo, with a CNR >9. CTCs were detected in 3 of 16 patients with stage III or IV melanoma. Among the three CTC-positive patients, two had disease progression; among the 13 CTC-negative patients, 4 showed disease progression. CONCLUSIONS We suggest that LA-PAT can detect suspected melanoma CTCs in patients in vivo and has potential clinical applications for disease monitoring in melanoma.
Collapse
Affiliation(s)
- Pengfei Hai
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Yuan Qu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Yang Li
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Liren Zhu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Leonid Shmuylovich
- Washington University School of Medicine, Division of Dermatology, St. Louis, Missouri, United States
| | - Lynn A. Cornelius
- Washington University School of Medicine, Division of Dermatology, St. Louis, Missouri, United States
- Address all correspondence to Lynn A. Cornelius, E-mail: ; Lihong V. Wang, E-mail:
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Address all correspondence to Lynn A. Cornelius, E-mail: ; Lihong V. Wang, E-mail:
| |
Collapse
|
8
|
Scott PJ, Kasprzak CR, Feller KD, Meenakshisundaram V, Williams CB, Long TE. Light and latex: advances in the photochemistry of polymer colloids. Polym Chem 2020. [DOI: 10.1039/d0py00349b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles.
Collapse
Affiliation(s)
- Philip J. Scott
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Keyton D. Feller
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Christopher B. Williams
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | - Timothy E. Long
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| |
Collapse
|
9
|
Merkes JM, Rueping M, Kiessling F, Banala S. Photoacoustic Detection of Superoxide Using Oxoporphyrinogen and Porphyrin. ACS Sens 2019; 4:2001-2008. [PMID: 31262172 DOI: 10.1021/acssensors.9b00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superoxide (O2•-) ion is a highly reactive oxygen species involved in many diseases; hence, its noninvasive detection is desirable to identify the onset of pathological processes. Here, we employed photoacoustic (PA) spectroscopy, which enables imaging at ultrasound resolution with the sensitivity of optical modality, for the first time to detect O2•-, using stimuli-responsive contrast agents. meso-(3,5-Di-tert-butyl 4-hydroxyphenyl) porphyrins and oxoporphyrinogens were used as PA contrast agents, which trap the O2•- and enable its detection. The trapped O2•- increased the PA signal amplitude of chromophores up to 9.6-fold, and induced a red-shift in the PA signal maxima of up to 225 nm. Therefore, these trigger-responsive probes may be highly valuable as smart diagnostic PA probes to investigate pathological events stimulated by O2•- species.
Collapse
Affiliation(s)
- Jean Michél Merkes
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic, and Comprehensive Diagnostic Center Aachen, RWTH Aachen University, Forckenbeckstrasse 55, D52074 Aachen, Germany
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
- Institute for Experimental Molecular Imaging, University Clinic, and Comprehensive Diagnostic Center Aachen, RWTH Aachen University, Forckenbeckstrasse 55, D52074 Aachen, Germany
| |
Collapse
|
10
|
Shan T, Qi J, Jiang M, Jiang H. GPU-based acceleration and mesh optimization of finite-element-method-based quantitative photoacoustic tomography: a step towards clinical applications. APPLIED OPTICS 2017; 56:4426-4432. [PMID: 29047873 DOI: 10.1364/ao.56.004426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/25/2017] [Indexed: 05/25/2023]
Abstract
Finite element method (FEM)-based time-domain quantitative photoacoustic tomography (TD-qPAT) is a powerful approach, as it provides highly accurate quantitative imaging capability by recovering absolute tissue absorption coefficients for functional imaging. However, this approach is extremely computationally demanding, and requires days for the reconstruction of one set of images, making it impractical to be used in clinical applications, where a large amount of data needs to be processed in a limited time scale. To address this challenge, here we present a graphic processing unit (GPU)-based parallelization method to accelerate the image reconstruction using FEM-based TD-qPAT. In addition, to further optimize FEM-based TD-qPAT reconstruction, an adaptive meshing technique, along with mesh density optimization, is adopted. Phantom experimental data are used in our study to evaluate the GPU-based TD-qPAT algorithm, as well as the adaptive meshing technique. The results show that our new approach can considerably reduce the computation time by at least 136-fold over the current central processing unit (CPU)-based algorithm. The quality of image reconstruction is also improved significantly when adaptive meshing and mesh density optimization are applied.
Collapse
|
11
|
Tumor thickness and histological features as predictors of invasive foci within preoperatively diagnosed ductal carcinoma in situ. Hum Pathol 2017; 64:145-155. [PMID: 28434924 DOI: 10.1016/j.humpath.2017.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 11/23/2022]
Abstract
Small invasion into ductal carcinoma in situ (DCIS) can easily be overlooked in resected breast specimens. To disclose useful markers predictive of invasive foci within preoperatively diagnosed DCIS lesions, a retrospective histopathological comparison was made between postoperatively diagnosed invasive ductal carcinoma with a predominant intraductal component (IDCPIC) (n=43) and pure DCIS (n=82). Through a multivariate logistic regression analysis model, 5 variables (DCIS grade, "tumor thickness," extent of retraction cleft, presence of lymph node metastasis, and HER2 score) were found to be significantly associated with the presence of invasive foci within DCIS; with a cutoff point of 0.315, sensitivity, specificity, positive predictive value, and negative predictive value were 0.93, 0.77, 0.68, and 0.95, respectively. No statistically significant difference was observed in recurrence-free survival between IDCPIC and pure DCIS, whereas the IDCPIC curve showed a slightly earlier decline than the DCIS one. In general, preoperative detection of lymph node metastasis in DCIS patients is elusive because of the extremely tiny metastatic size in most cases; thus, a 4-variable model, without lymph node metastasis, would be the actual working model. Furthermore, tumor "thickness" was found to be the most significant parameter predictive of invasive foci within DCIS. Although IDCPIC and pure DCIS showed similar recurrence-free survival curves, prediction of invasive foci within DCIS necessitates postoperative pathological analysis of surgically resected lesions.
Collapse
|
12
|
Zou C, Wu B, Dong Y, Song Z, Zhao Y, Ni X, Yang Y, Liu Z. Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine. Int J Nanomedicine 2016; 12:179-195. [PMID: 28053532 PMCID: PMC5191855 DOI: 10.2147/ijn.s124218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership.
Collapse
Affiliation(s)
- Chunpeng Zou
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Beibei Wu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Yanyan Dong
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Zhangwei Song
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Yaping Zhao
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Xianwei Ni
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Yan Yang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Zhe Liu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
13
|
Mason RP. Commentary on Photoacoustic Tomography. J Nucl Med 2015; 56:1815-6. [PMID: 26383150 DOI: 10.2967/jnumed.115.165183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Talukdar Y, Avti P, Sun J, Sitharaman B. Multimodal ultrasound-photoacoustic imaging of tissue engineering scaffolds and blood oxygen saturation in and around the scaffolds. Tissue Eng Part C Methods 2014; 20:440-9. [PMID: 24107069 PMCID: PMC4005489 DOI: 10.1089/ten.tec.2013.0203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/07/2013] [Indexed: 12/31/2022] Open
Abstract
Preclinical, noninvasive imaging of tissue engineering polymeric scaffold structure and/or the physiological processes such as blood oxygenation remains a challenge. In vitro or ex vivo, the widely used scaffold characterization modalities such as porosimetry, electron or optical microscopy, and X-ray microcomputed tomography have limitations or disadvantages-some are invasive or destructive, others have limited tissue penetration (few hundred micrometers) and/or show poor contrast under physiological conditions. Postmortem histological analysis, the most robust technique for the evaluation of neovascularization is obviously not appropriate for acquiring physiological or longitudinal data. In this study, we have explored the potential of ultrasound (US)-coregistered photoacoustic (PA) imaging as a noninvasive multimodal imaging modality to overcome some of the above challenges and/or provide complementary information. US-PA imaging was employed to characterize poly(lactic-co-glycolic acid) (PLGA) polymer scaffolds or single-walled carbon nanotube (SWCNT)-incorporated PLGA (SWCNT-PLGA) polymer scaffolds as well as blood oxygen saturation within and around the scaffolds. Ex vivo, PLGA and SWCNT-PLGA scaffolds were placed at 0.5, 2, and 6 mm depths in chicken breast tissues. PLGA scaffolds could be localized with US imaging, but generate no PA signal (excitation wavelengths 680 and 780 nm). SWCNT-PLGA scaffolds generated strong PA signals at both wavelengths due to the presence of the SWCNTs and could be localized with both US and PA imaging depths between 0.5-6 mm (lateral resolution = 90 μm, axial resolution = 40 μm). In vivo, PLGA and SWCNT-PLGA scaffolds were implanted in subcutaneous pockets at 2 mm depth in rats, and imaged at 7 and 14 days postsurgery. The anatomical position of both the scaffolds could be determined from the US images. Only SWCNT-PLGA scaffolds could be easily detected in the US-PA images. SWCNT-PLGA scaffolds had significant four times higher PA signal intensity compared with the surrounding tissue and PLGA scaffolds. In vivo blood oxygen saturation maps around and within the PLGA scaffolds could be obtained by PA imaging. There was no significant difference in oxygen saturation for the PLGA scaffolds at the two time points. The blood oxygen saturation maps complemented the histological analysis of neovascularization of the PLGA scaffolds.
Collapse
Affiliation(s)
- Yahfi Talukdar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Pramod Avti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - John Sun
- VisualSonics, Inc., Toronto, Ontario, Canada
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
15
|
Yao J, Wang LV. Breakthrough in Photonics 2013: Photoacoustic Tomography in Biomedicine. IEEE PHOTONICS JOURNAL 2014; 6:0701006. [PMID: 25383143 PMCID: PMC4224294 DOI: 10.1109/jphot.2014.2310197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photoacoustic tomography (PAT) is one of the fastest growing biomedical imaging modalities in the last decade. Building on its high scalability and complementary imaging contrast to other mainstream modalities, PAT has gained substantial momentum in both preclinical and clinical studies. In 2013, PAT has grown markedly in both its technological capabilities and biomedical applications. In particular, breakthroughs have been made in super-resolution imaging, deep blood flow measurement, small animal resting state brain mapping, video rate functional human imaging, and human breast imaging. These breakthroughs have either successfully solved long-standing technical issues in PAT or significantly enhanced its imaging capability. This Review will summarize state-of-the-art developments in PAT and highlight a few representative achievements of the year 2013.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
16
|
Sarimollaoglu M, Nedosekin DA, Menyaev YA, Juratli MA, Zharov VP. Nonlinear photoacoustic signal amplification from single targets in absorption background. PHOTOACOUSTICS 2014; 2:1-11. [PMID: 24921062 PMCID: PMC4048727 DOI: 10.1016/j.pacs.2013.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Photoacoustic (PA) detection of single absorbing targets such as nanoparticles or cells can be limited by absorption background. We show here that this problem can be overcome by using the nonlinear photoacoustics based on the differences in PA signal dependences on the laser energy from targets and background. Among different nonlinear phenomena, we focused on laser generation of nanobubbles as more efficient PA signal amplifiers from strongly absorbing, highly localized targets in the presence of spatially homogenous absorption background generating linear signals only. This approach was demonstrated by using nonlinear PA flow cytometry platform for label-free detection of circulating melanoma cells in blood background in vitro and in vivo. Nonlinearly amplified PA signals from overheated melanin nanoclusters in melanoma cells became detectable above still linear blood background. Nonlinear nanobubble-based photoacoustics provide new opportunities to significantly (5-20-fold) increase PA contrast of single nanoparticles, cells, viruses and bacteria in complex biological environments.
Collapse
|