1
|
Network topology analysis of essential genes interactome of Helicobacter pylori to explore novel therapeutic targets. Microb Pathog 2021; 158:105059. [PMID: 34157412 DOI: 10.1016/j.micpath.2021.105059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022]
Abstract
The Helicobacter pylori chronic colonization produces a wide range of gastric diseases in the gastric mucosa by abetting inflammation. Amidst coevolution and reorganization of its metabolism with humans, it has become difficult still imperative to understand and prevent its growth. This study focus to explore functional insights into identification of hub proteins/genes by aggregating the behavior of genes connected in a protein-protein interaction (PPI) network. We have constructed a PPI network of 123 essential genes along with 1213 interactions in H. pylori 26695. The degree and other centrality measures analysis assist in identifying the important hub nodes, which are top-ranked proteins. A total of nine proteins (recA, guaA, dnaK, rpsB, rplQ, rpmA, rpmC, rpmF, and rpsE) were obtained with high degree (k), betweenness centrality (BC) value. Gene ontology analysis reveals 8, 5 and 3 GO terms correspond to biological processes, cellular components and molecular function respectively. Gene complexes of hypothetical proteins (HPs) were related to aminoacyl-tRNA biosynthesis, biosynthesis of secondary metabolites, bacterial secretion system and protein export. The MCODE analysis revealed that protein from module M1, M3 and M6 include the proteins which have highest degree and BC values. It is noteworthy to mention that the bifunctional GMP synthase/glutamine amidotransferase protein (guaA), molecular chaperon (dnaK), recombinase A (recA) constitute as hub proteins. As a result, these genes are considered as network hub nodes that might be used as therapeutic targets. Our analysis affords a detailed understanding of the molecular process and pathways regulated by the essential genes in H. pylori 26695.
Collapse
|
2
|
Raj R, Agarwal N, Raghavan S, Chakraborti T, Poluri KM, Pande G, Kumar D. Epigallocatechin Gallate with Potent Anti- Helicobacter pylori Activity Binds Efficiently to Its Histone-like DNA Binding Protein. ACS OMEGA 2021; 6:3548-3570. [PMID: 33585739 PMCID: PMC7876696 DOI: 10.1021/acsomega.0c04763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/21/2021] [Indexed: 05/10/2023]
Abstract
Helicobacter pylori (H. pylori)-a human gastric pathogen-forms a major risk factor for the development of various gastric pathologies such as chronic inflammatory gastritis, peptic ulcer, lymphomas of mucosa-associated lymphoid tissues, and gastric carcinoma. The complete eradication of infection is the primary objective of treating any H. pylori-associated gastric condition. However, declining eradication efficiencies, off-target effects, and patient noncompliance to prolong and broad-spectrum antibiotic treatments has spurred the clinical interest to search for alternative effective and safer therapeutic options. As natural compounds are safe and privileged with high levels of antibacterial-activity, previous studies have tested and reported a plethora of such compounds with potential in vitro/in vivo anti-H. pylori activity. However, the mode of action of majority of these natural compounds is unclear. The present study has been envisaged to compile the information of various such natural compounds and to evaluate their binding with histone-like DNA-binding proteins of H. pylori (referred here as Hup) using in silico molecular docking-based virtual screening experiments. Hup-being a major nucleoid-associated protein expressed by H. pylori-plays a strategic role in its survival and persistent colonization under hostile stress conditions. The ligand with highest binding energy with Hup-that is, epigallocatechin-(-)gallate (EGCG)-was rationally selected for further computational and experimental testing. The best docking poses of EGCG with Hup were first evaluated for their solution stability using long run molecular dynamics simulations and then using fluorescence and nuclear magnetic resonance titration experiments which demonstrated that the binding of EGCG with Hup is fairly strong (the resultant apparent dissociation constant (k D) values were equal to 2.61 and 3.29 ± 0.42 μM, respectively).
Collapse
Affiliation(s)
- Ritu Raj
- Centre
of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India
- Department
of Biochemistry & Biophysics, University
of Kalyani, Kalyani 741235, West Bengal, India
| | - Nipanshu Agarwal
- Department
of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sriram Raghavan
- Computational
Structural Biology Team, RIKEN Center for
Computational Science (R-CCS), Kobe 650-0047, Japan
| | - Tapati Chakraborti
- Department
of Biochemistry & Biophysics, University
of Kalyani, Kalyani 741235, West Bengal, India
| | - Krishna Mohan Poluri
- Department
of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Gaurav Pande
- Department
of Gastroeneterology, SGPGIMS, Lucknow 226014, Uttar Pradesh, India
- . Phone: +91-9170689999
| | - Dinesh Kumar
- Centre
of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India
- . Phone: +91-8953261506
| |
Collapse
|
3
|
Exquisite binding interaction of 18β-Glycyrrhetinic acid with histone like DNA binding protein of Helicobacter pylori: A computational and experimental study. Int J Biol Macromol 2020; 161:231-246. [DOI: 10.1016/j.ijbiomac.2020.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
4
|
Flavodoxins as Novel Therapeutic Targets against Helicobacter pylori and Other Gastric Pathogens. Int J Mol Sci 2020; 21:ijms21051881. [PMID: 32164177 PMCID: PMC7084853 DOI: 10.3390/ijms21051881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Flavodoxins are small soluble electron transfer proteins widely present in bacteria and absent in vertebrates. Flavodoxins participate in different metabolic pathways and, in some bacteria, they have been shown to be essential proteins representing promising therapeutic targets to fight bacterial infections. Using purified flavodoxin and chemical libraries, leads can be identified that block flavodoxin function and act as bactericidal molecules, as it has been demonstrated for Helicobacter pylori (Hp), the most prevalent human gastric pathogen. Increasing antimicrobial resistance by this bacterium has led current therapies to lose effectiveness, so alternative treatments are urgently required. Here, we summarize, with a focus on flavodoxin, opportunities for pharmacological intervention offered by the potential protein targets described for this bacterium and provide information on other gastrointestinal pathogens and also on bacteria from the gut microbiota that contain flavodoxin. The process of discovery and development of novel antimicrobials specific for Hp flavodoxin that is being carried out in our group is explained, as it can be extrapolated to the discovery of inhibitors specific for other gastric pathogens. The high specificity for Hp of the antimicrobials developed may be of help to reduce damage to the gut microbiota and to slow down the development of resistant Hp mutants.
Collapse
|
5
|
González A, Casado J, Chueca E, Salillas S, Velázquez-Campoy A, Espinosa Angarica V, Bénejat L, Guignard J, Giese A, Sancho J, Lehours P, Lanas Á. Repurposing Dihydropyridines for Treatment of Helicobacter pylori Infection. Pharmaceutics 2019; 11:pharmaceutics11120681. [PMID: 31847484 PMCID: PMC6969910 DOI: 10.3390/pharmaceutics11120681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is a major cause of the increasing failures in the current eradication therapies against Helicobacter pylori. In this scenario, repurposing drugs could be a valuable strategy to fast-track novel antimicrobial agents. In the present study, we analyzed the inhibitory capability of 1,4-dihydropyridine (DHP) antihypertensive drugs on the essential function of the H. pylori response regulator HsrA and investigated both the in vitro antimicrobial activities and the in vivo efficacy of DHP treatments against H. pylori. Six different commercially available and highly prescribed DHP drugs-namely, Nifedipine, Nicardipine, Nisoldipine, Nimodipine, Nitrendipine, and Lercanidipine-noticeably inhibited the DNA binding activity of HsrA and exhibited potent bactericidal activities against both metronidazole- and clarithromycin-resistant strains of H. pylori, with minimal inhibitory concentration (MIC) values in the range of 4 to 32 mg/L. The dynamics of the decline in the bacterial counts at 2 × MIC appeared to be correlated with the lipophilicity of the drugs, suggesting different translocation efficiencies of DHPs across the bacterial membrane. Oral treatments with 100 mg/kg/day of marketed formulations of Nimodipine or Nitrendipine in combination with omeprazole significantly reduced the H. pylori gastric colonization in mice. The results presented here support a novel therapeutic solution for treatment of antibiotic-resistant H. pylori infections.
Collapse
Affiliation(s)
- Andrés González
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-762807
| | - Javier Casado
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Eduardo Chueca
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Sandra Salillas
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- ARAID Foundation, Government of Aragon, Ranillas 1-D, 50018 Zaragoza, Spain
| | - Vladimir Espinosa Angarica
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| | - Lucie Bénejat
- UMR1053 Bordeaux Research in Translational Oncology, INSERM, Université Bordeaux, BaRITOn, 33000 Bordeaux, France
- French National Reference Center for Campylobacters & Helicobacters, 33000 Bordeaux, France
| | - Jérome Guignard
- UMR1053 Bordeaux Research in Translational Oncology, INSERM, Université Bordeaux, BaRITOn, 33000 Bordeaux, France
| | - Alban Giese
- UMR1053 Bordeaux Research in Translational Oncology, INSERM, Université Bordeaux, BaRITOn, 33000 Bordeaux, France
| | - Javier Sancho
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Philippe Lehours
- UMR1053 Bordeaux Research in Translational Oncology, INSERM, Université Bordeaux, BaRITOn, 33000 Bordeaux, France
- French National Reference Center for Campylobacters & Helicobacters, 33000 Bordeaux, France
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa; San Juan Bosco 15, 50009 Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Pasala C, Chilamakuri CSR, Katari SK, Nalamolu RM, Bitla AR, Umamaheswari A. An in silico study: Novel targets for potential drug and vaccine design against drug resistant H. pylori. Microb Pathog 2018; 122:156-161. [DOI: 10.1016/j.micpath.2018.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
|
7
|
Jaiswal N, Raikwal N, Pandey H, Agarwal N, Arora A, Poluri KM, Kumar D. NMR elucidation of monomer-dimer transition and conformational heterogeneity in histone-like DNA binding protein of Helicobacter pylori. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:285-299. [PMID: 29241299 DOI: 10.1002/mrc.4701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
Helicobacter pylori (H. pylori) colonizes under harsh acidic/oxidative stress conditions of human gastrointestinal tract and can survive there for infinitely longer durations of host life. The bacterium expresses several harbinger proteins to facilitate its persistent colonization under such conditions. One such protein in H. pylori is histone-like DNA binding protein (Hup), which in its homo-dimeric form binds to DNA to perform various DNA dependent cellular activities. Further, it also plays an important role in protecting the genomic DNA from oxidative stress and acidic denaturation. Legitimately, if the binding of Hup to DNA is suppressed, it will directly impact on the survival of the bacterium, thus making Hup a potential therapeutic target for developing new anti-H. pylori agents. However, to inhibit the binding of Hup to DNA, it is necessary to gain detailed insights into the molecular and structural basis of Hup-dimerization and its binding mechanism to DNA. As a first step in this direction, we report here the nuclear magnetic resonance (NMR) assignments and structural features of Hup at pH 6.0. The study revealed the occurrence of dynamic equilibrium between its monomer and dimer conformations. The dynamic equilibrium was found to shifting towards dimer both at low temperature and low pH; whereas DNA binding studies evidenced that the protein binds to DNA in its dimeric form. These preliminary investigations correlate very well with the diverse functionality of protein and will form the basis for future studies aiming to develop novel anti-H. pylori agents employing structure-based-rational drug discovery approach.
Collapse
Affiliation(s)
- Nancy Jaiswal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Dr. APJ Abdul Kalam Technical University, IET Campus, Sitapur Road, Lucknow, 226021, Uttar Pradesh, India
| | - Nisha Raikwal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| | - Himanshu Pandey
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Nipanshu Agarwal
- Department of Biotechnology and Centre for Nanotechnology Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Krishna Mohan Poluri
- Department of Biotechnology and Centre for Nanotechnology Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| |
Collapse
|
8
|
Synthesis, molecular properties and DFT studies of new phosphoramidates as potential urease inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1113-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Oliveira FM, Barbosa LCA, Ismail FMD. The diverse pharmacology and medicinal chemistry of phosphoramidates – a review. RSC Adv 2014. [DOI: 10.1039/c4ra01454e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Promising examples of the phosphoramidates, which possess antiviral, antitumor, antibacterial, antimalarial and anti-protozoal as well as enzyme inhibitor activity are reviewed.
Collapse
Affiliation(s)
| | - Luiz C. A. Barbosa
- Department of Chemistry
- Universidade Federal de Viçosa
- Viçosa, Brazil
- Department of Chemistry
- Universidade Federal de Minas Gerais
| | - Fyaz M. D. Ismail
- Medicinal Chemistry Research Group
- Institute for Health Research
- School of Pharmacy & Biomolecular Sciences
- Liverpool John Moores University
- Liverpool, UK
| |
Collapse
|
10
|
Smiley R, Bailey J, Sethuraman M, Posecion N, Showkat Ali M. Comparative proteomics analysis of sarcosine insoluble outer membrane proteins from clarithromycin resistant and sensitive strains of Helicobacter pylori. J Microbiol 2013; 51:612-8. [PMID: 24173641 DOI: 10.1007/s12275-013-3029-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori causes disease manifestations in humans including chronic gastric and peptic ulcers, gastric cancer, and lymphoid tissue lymphoma. Increasing rates of H. pylori clarithromycin resistance has led to higher rates of disease development. Because antibiotic resistance involves modifications of outer membrane proteins (OMP) in other Gram-negative bacteria, this study focuses on identification of H. pylori OMP's using comparative proteomic analyses of clarithromycin-susceptible and -resistant H. pylori strains. Comparative proteomics analyses of isolated sarcosine-insoluble OMP fractions from clarithromycin-susceptible and -resistant H. pylori strains were performed by 1) one dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis protein separation and 2) in-gel digestion of the isolated proteins and mass spectrometry analysis by Matrix Assisted Laser Desorption Ionization-tandem mass spectrometry. Iron-regulated membrane protein, UreaseB, EF-Tu, and putative OMP were down-regulated; HopT (BabB) transmembrane protein, HofC, and OMP31 were up-regulated in clarithromycin-resistant H. pylori. Western blotting and real time PCR, respectively, validated UreaseB subunit and EF-Tu changes at the protein level, and mRNA expression of HofC and HopT. This limited proteomic study provides evidence that alteration of the outer membrane proteins' profile may be a novel mechanism involved in clarithromycin resistance in H. pylori.
Collapse
Affiliation(s)
- Rebecca Smiley
- Department of Clinical Investigation, William Beaumont Army Medical Center, 5005 Piedras Street, El Paso, TX, 79920-5001, USA
| | | | | | | | | |
Collapse
|
11
|
Resistance mechanism to an uncompetitive inhibitor of a single-substrate, single-product enzyme: a study of Helicobacter pylori glutamate racemase. Future Med Chem 2013; 5:1203-14. [DOI: 10.4155/fmc.13.94] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two independent series of inhibitors of Helicobacter pylori glutamate racemase (MurI) were characterized for their kinetic mechanism, and one was used to generate resistant mutants in vitro. Mutant MurI enzymes from these strains were characterized by structural, genetic, kinetic and biophysical methods. Both inhibitor series, pyrazolopyrimidinediones and benzodiazepines, are uncompetitive with respect to the glutamate substrate, and the resistance mutations were found to act by reducing the affinity of MurI for substrate, thereby reducing the pool of enzyme–substrate complex available for binding inhibitor, while still allowing sufficient glutamate racemase activity for peptidoglycan construction. Uncompetitive inhibitors of a single-substrate, single-product enzyme are rare, and this work gives insight into an remarkable resistance mechanism. This article will discuss the projected clinical impact of H. pylori MurI resistance on these types of inhibitors.
Collapse
|