1
|
Wang H, Li H, Liu Z, Zhu Z, Cao Y. Activity of thonningianin A against Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol 2024; 108:96. [PMID: 38212967 PMCID: PMC10784352 DOI: 10.1007/s00253-023-12996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Fungal infections are increasing rapidly, and antifungal agents used in clinics are limited. Therefore, novel antifungal agents with high efficiency are urgently required. In this study, we investigated the antifungal activity of thonningianin A (THA), a natural compound that is widely found in plants. We first determined the activity of THA against Candida albicans, one of the most common fungal pathogens, and found that THA showed antifungal activity against all C. albicans tested, including several fluconazole-resistant isolates. THA also inhibits the growth of non-Candida albicans species. In addition, THA displayed antibiofilm activity and could not only inhibit biofilm formation but also destroy mature biofilms. The in vivo antifungal efficacy of THA was confirmed in a Galleria mellonella infection model. Further studies revealed that THA could enhance intracellular reactive oxygen species (ROS) production and regulate the transcription of several redox-related genes. Specifically, caspase activity and expression of CaMCA1, a caspase-encoding gene in C. albicans, were remarkably increased upon THA treatment. Consistent with this, in the presence of THA, the Camca1 null mutant displayed higher survival rates and reduced caspase activity compared to the wild-type or CaMCA1-reintroduced strains, indicating an important role of CaMCA1 in the antifungal activity of THA. Taken together, our results indicate that THA possesses excellent antifungal activity and may be a promising novel antifungal candidate. KEY POINTS: • THA exhibits activity against Candida species, including fluconazole-resistant isolates • THA inhibits biofilm formation and destroys mature biofilm • Elevated ROS production and CaMCA1-mediated caspase activity are involved in the antifungal mechanisms of THA.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Hui Li
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, 200438, China
| | - ZhiWei Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - ZhenYu Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - YingYing Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
2
|
Kontou A, Agakidou E, Chatziioannidis I, Chotas W, Thomaidou E, Sarafidis K. Antibiotics, Analgesic Sedatives, and Antiseizure Medications Frequently Used in Critically Ill Neonates: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:871. [PMID: 39062320 PMCID: PMC11275925 DOI: 10.3390/children11070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Antibiotic, analgesic sedative, and antiseizure medications are among the most commonly used medications in preterm/sick neonates, who are at high risk of nosocomial infections, central nervous system complications, and are exposed to numerous painful/stressful procedures. These severe and potentially life-threatening complications may have serious short- and long-term consequences and should be prevented and/or promptly treated. The reported variability in the medications used in neonates indicates the lack of adequate neonatal studies regarding their effectiveness and safety. Important obstacles contributing to inadequate studies in preterm/sick infants include difficulties in obtaining parental consent, physicians' unwillingness to recruit preterm infants, the off-label use of many medications in neonates, and other scientific and ethical concerns. This review is an update on the use of antimicrobials (antifungals), analgesics (sedatives), and antiseizure medications in neonates, focusing on current evidence or knowledge gaps regarding their pharmacokinetics, indications, safety, dosage, and evidence-based guidelines for their optimal use in neonates. We also address the effects of early antibiotic use on the intestinal microbiome and its association with long-term immune-related diseases, obesity, and neurodevelopment (ND). Recommendations for empirical treatment and the emergence of pathogen resistance to antimicrobials and antifungals are also presented. Finally, future perspectives on the prevention, modification, or reversal of antibiotic resistance are discussed.
Collapse
Affiliation(s)
- Angeliki Kontou
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - Eleni Agakidou
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - Ilias Chatziioannidis
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| | - William Chotas
- Department of Neonatology, University of Vermont, Burlington, VT 05405, USA
| | - Evanthia Thomaidou
- Department of Anesthesia and Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Kosmas Sarafidis
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (E.A.); (I.C.); (K.S.)
| |
Collapse
|
3
|
Shen J, Lu R, Cai Q, Fan L, Yan W, Zhu Z, Yang L, Cao Y. Mangiferin enhances the antifungal activities of caspofungin by destroying polyamine accumulation. Virulence 2021; 12:217-230. [PMID: 33404349 PMCID: PMC7801120 DOI: 10.1080/21505594.2020.1870079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The incidence of fungal infections has increased continuously in recent years. Caspofungin (CAS) is one of the first-line drugs for the treatment of systemic fungal infection. However, the emerging CAS-resistant clinical isolates and high economic cost for CAS administration hamper the wide application of this drug. Thus, the combined administration of CAS with other compounds that can enhance the antifungal activity and reduce the dose of CAS has gained more and more attention. In this study, we investigated the effect of mangiferin (MG) on the antifungal activities of CAS. Our results showed that MG acted synergistically with CAS against various Candida spp., including CAS-resistant C. albicans. Moreover, MG could enhance the activity of CAS against biofilm. The in vivo synergism of MG and CAS was further confirmed in a mouse model of disseminated candidiasis. To explore the mechanisms, we found that SPE1-mediated polyamine biosynthesis pathway was involved in the fungal cell stress to caspofungin. Treatment of CAS alone could stimulate SPE1 expression and accumulation of polyamines, while combined treatment of MG and CAS inhibited SPE1 expression and destroyed polyamine accumulation, which might contribute to increased oxidative damage and cell death. These results provided a promising strategy for high efficient antifungal therapies and revealed novel mechanisms for CAS resistance.
Collapse
Affiliation(s)
- Juan Shen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - RenYi Lu
- School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Qing Cai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - LingZhi Fan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - WanNian Yan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - LianJuan Yang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| |
Collapse
|
4
|
Iosifidis E, Papachristou S, Roilides E. Advances in the Treatment of Mycoses in Pediatric Patients. J Fungi (Basel) 2018; 4:E115. [PMID: 30314389 PMCID: PMC6308938 DOI: 10.3390/jof4040115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022] Open
Abstract
The main indications for antifungal drug administration in pediatrics are reviewed as well as an update of the data of antifungal agents and antifungal policies performed. Specifically, antifungal therapy in three main areas is updated as follows: a) Prophylaxis of premature neonates against invasive candidiasis; b) management of candidemia and meningoencephalitis in neonates; and c) prophylaxis, empiric therapy, and targeted antifungal therapy in children with primary or secondary immunodeficiencies. Fluconazole remains the most frequent antifungal prophylactic agent given to high-risk neonates and children. However, the emergence of fluconazole resistance, particularly in non-albicans Candida species, should be considered during preventive or empiric therapy. In very-low birth-weight neonates, although fluconazole is used as antifungal prophylaxis in neonatal intensive care units (NICU's) with relatively high incidence of invasive candidiasis (IC), its role is under continuous debate. Amphotericin B, primarily in its liposomal formulation, remains the mainstay of therapy for treating neonatal and pediatric yeast and mold infections. Voriconazole is indicated for mold infections except for mucormycosis in children >2 years. Newer triazoles-such as posaconazole and isavuconazole-as well as echinocandins, are either licensed or under study for first-line or salvage therapy, whereas combination therapy is kept for refractory cases.
Collapse
Affiliation(s)
- Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Konstantinoupoleos 49, 54642, Thessaloniki, Greece.
| | - Savvas Papachristou
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Konstantinoupoleos 49, 54642, Thessaloniki, Greece.
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Konstantinoupoleos 49, 54642, Thessaloniki, Greece.
| |
Collapse
|
5
|
Wang X, Lin M, Xu D, Lai D, Zhou L. Structural Diversity and Biological Activities of Fungal Cyclic Peptides, Excluding Cyclodipeptides. Molecules 2017; 22:E2069. [PMID: 29186926 PMCID: PMC6150023 DOI: 10.3390/molecules22122069] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022] Open
Abstract
Cyclic peptides are cyclic compounds formed mainly by the amide bonds between either proteinogenic or non-proteinogenic amino acids. This review highlights the occurrence, structures and biological activities of fungal cyclic peptides (excluding cyclodipeptides, and peptides containing ester bonds in the core ring) reported until August 2017. About 293 cyclic peptides belonging to the groups of cyclic tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, undeca-, dodeca-, tetradeca-, and octadecapeptides as well as cyclic peptides containing ether bonds in the core ring have been isolated from fungi. They were mainly isolated from the genera Aspergillus, Penicillium, Fusarium, Acremonium and Amanita. Some of them were screened to have antimicrobial, antiviral, cytotoxic, phytotoxic, insecticidal, nematicidal, immunosuppressive and enzyme-inhibitory activities to show their potential applications. Some fungal cyclic peptides such as the echinocandins, pneumocandins and cyclosporin A have been developed as pharmaceuticals.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Minyi Lin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Dinleyici EC. Pediatric invasive fungal infections: realities, challenges, concerns, myths and hopes. Expert Rev Anti Infect Ther 2011; 9:273-274. [DOI: 10.1586/eri.11.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|