1
|
Quan DH, Wang T, Martinez E, Kim HY, Sintchenko V, Britton WJ, Triccas JA, Alffenaar JWC. Synergistic oral beta-lactam combinations for treating tuberculosis. J Appl Microbiol 2024; 135:lxae255. [PMID: 39394664 DOI: 10.1093/jambio/lxae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The enormous burden of tuberculosis (TB) worldwide is a major challenge to human health, but the costs and risks associated with novel drug discovery have limited treatment options for patients. Repurposing existing antimicrobial drugs offers a promising avenue to expand TB treatment possibilities. This study aimed to explore the activity and synergy of beta-lactams in combination with a beta-lactamase inhibitor, which have been underutilized in TB treatment to date. METHODS Based on inhibitory concentration, oral bioavailability, and commercial availability, seven beta-lactams (cefadroxil, tebipenem, cephradine, cephalexin, cefdinir, penicillin V, and flucloxacillin), two beta-lactamase inhibitors (avibactam and clavulanate), and three second-line TB drugs (moxifloxacin, levofloxacin, and linezolid) were selected for combination in vitro testing against Mycobacterium tuberculosis H37Rv. Resazurin assays and colony forming unit enumeration were used to quantify drug efficacy, Chou-Talalay calculations were performed to identify drug synergy and Chou-Martin calculations were performed to quantify drug dose reduction index. RESULTS The order of activity of beta-lactams was cefadroxil > tebipenem > cephradine > cephalexin > cefdinir > penicillin V > flucloxacillin. The addition of clavulanate improved beta-lactam activity to a greater degree than the addition of avibactam. As a result, avibactam was excluded from further investigations, which focused on clavulanate. Synergy was demonstrated for cefdinir/cephradine, cefadroxil/tebipenem, cefadroxil/penicillin V, cefadroxil/cefdinir, cephalexin/tebipenem, cephalexin/penicillin V, cephalexin/cefdinir, cephalexin/cephradine, and cefadroxil/cephalexin, all with clavulanate. However, combining beta-lactams with moxifloxacin, levofloxacin, or linezolid resulted in antagonistic effects, except for the combinations of penicillin V/levofloxacin, penicillin V/moxifloxacin, and cefdinir/moxifloxacin. CONCLUSIONS Beta-lactam synergy may provide viable combination therapies for the treatment of TB.
Collapse
Affiliation(s)
- Diana H Quan
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, 2006 NSW, Australia
| | - Trixie Wang
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, 2006 NSW, Australia
| | - Elena Martinez
- Centre for Infectious Diseases and Microbiology, The Westmead Institute, 2145 NSW, Australia
| | - Hannah Y Kim
- School of Pharmacy, The University of Sydney, 2006 NSW, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology, The Westmead Institute, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, Camperdown, 2006 NSW, Australia
| | - Warwick J Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, 2006 NSW, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, 2050 NSW, Australia
| | - James A Triccas
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, Camperdown, 2006 NSW, Australia
| | - Jan-Willem C Alffenaar
- School of Pharmacy, The University of Sydney, 2006 NSW, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia
- Westmead Hospital, Westmead, 2145 NSW, Australia
| |
Collapse
|
2
|
de Munnik M, Lang PA, Calvopiña K, Rabe P, Brem J, Schofield CJ. Biochemical and crystallographic studies of L,D-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate. Commun Biol 2024; 7:1173. [PMID: 39294212 PMCID: PMC11410929 DOI: 10.1038/s42003-024-06785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The essential L,D-transpeptidase of Mycobacterium tuberculosis (LdtMt2) catalyses the formation of 3 → 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit LdtMt2 have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus. The tetrapeptides were used in binding / turnover assays and biophysical studies on LdtMt2. We determined a crystal structure of wild-type LdtMt2 reacted with its natural substrate, the tetrapeptide monomer of the peptidoglycan layer. This structure shows formation of a thioester linking the catalytic cysteine and the donor substrate, reflecting an intermediate in the transpeptidase reaction; it informs on the mode of entrance of the donor substrate into the LdtMt2 active site. The results will be useful in design of LdtMt2 inhibitors, including those based on substrate binding interactions, a strategy successfully employed for other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Conyers LE, Saunders BM. Treatment for non-tuberculous mycobacteria: challenges and prospects. Front Microbiol 2024; 15:1394220. [PMID: 38887711 PMCID: PMC11180805 DOI: 10.3389/fmicb.2024.1394220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Non-Tuberculous mycobacteria (NTM) are opportunistic environmental bacteria. Globally, NTM incidence is increasing and modeling suggests that, without new interventions, numbers will continue to rise. Effective treatments for NTM infections remain suboptimal. Standard therapy for Mycobacterium avium complex, the most commonly isolated NTM, requires a 3-drug regime taken for approximately 18 months, with rates of culture conversion reported between 45 and 70%, and high rates of relapse or reinfection at up to 60%. New therapeutic options for NTM treatment are urgently required. A survey of ongoing clinical trials for new NTM therapy listed on ClinicalTrials.Gov using the terms 'Mycobacterium avium', 'Mycobacterium abscessus', 'Mycobacterium intracellulare', 'Non tuberculous Mycobacteria' and 'Nontuberculous Mycobacteria' and a selection criterion of interventional studies using antibiotics demonstrates that most trials involve dose and combination therapy of the guideline based therapy or including one or more of; Amikacin, Clofazimine, Azithromycin and the anti-TB drugs Bedaquiline and Linezolid. The propensity of NTMs to form biofilms, their unique cell wall and expression of both acquired and intrinsic resistance, are all hampering the development of new anti-NTM therapy. Increased investment in developing targeted treatments, specifically for NTM infections is urgently required.
Collapse
|
4
|
Negatu DA, Aragaw WW, Dartois V, Dick T. A pairwise approach to revitalize β-lactams for the treatment of TB. Antimicrob Agents Chemother 2024:e0003424. [PMID: 38690896 DOI: 10.1128/aac.00034-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/07/2024] [Indexed: 05/03/2024] Open
Abstract
The dual β-lactam approach has been successfully applied to overcome target redundancy in nontuberculous mycobacteria. Surprisingly, this approach has not been leveraged for Mycobacterium tuberculosis, despite the high conservation of peptidoglycan synthesis. Through a comprehensive screen of oral β-lactam pairs, we have discovered that cefuroxime strongly potentiates the bactericidal activity of tebipenem and sulopenem-advanced clinical candidates-and amoxicillin, at concentrations achieved clinically. β-lactam pairs thus have the potential to reduce TB treatment duration.
Collapse
Affiliation(s)
- Dereje A Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Radojković M, Ubbink M. Positive epistasis drives clavulanic acid resistance in double mutant libraries of BlaC β-lactamase. Commun Biol 2024; 7:197. [PMID: 38368480 PMCID: PMC10874438 DOI: 10.1038/s42003-024-05868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
Phenotypic effects of mutations are highly dependent on the genetic backgrounds in which they occur, due to epistatic effects. To test how easily the loss of enzyme activity can be compensated for, we screen mutant libraries of BlaC, a β-lactamase from Mycobacterium tuberculosis, for fitness in the presence of carbenicillin and the inhibitor clavulanic acid. Using a semi-rational approach and deep sequencing, we prepare four double-site saturation libraries and determine the relative fitness effect for 1534/1540 (99.6%) of the unique library members at two temperatures. Each library comprises variants of a residue known to be relevant for clavulanic acid resistance as well as residue 105, which regulates access to the active site. Variants with greatly improved fitness were identified within each library, demonstrating that compensatory mutations for loss of activity can be readily found. In most cases, the fittest variants are a result of positive epistasis, indicating strong synergistic effects between the chosen residue pairs. Our study sheds light on a role of epistasis in the evolution of functional residues and underlines the highly adaptive potential of BlaC.
Collapse
Affiliation(s)
- Marko Radojković
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Singh S, Gumbo T, Alffenaar JW, Boorgula GD, Shankar P, Thomas TA, Dheda K, Malinga L, Raj P, Aryal S, Srivastava S. Meropenem-vaborbactam restoration of first-line drug efficacy and comparison of meropenem-vaborbactam-moxifloxacin versus BPaL MDR-TB regimen. Int J Antimicrob Agents 2023; 62:106968. [PMID: 37726063 PMCID: PMC10850916 DOI: 10.1016/j.ijantimicag.2023.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Meropenem in combination with β-lactamase inhibitors (BLIs) and other drugs was tested to identify alternative treatment regimens for multidrug-resistant tuberculosis (MDR-TB). METHODS The following were performed: (1) MIC experiments; (2) static time-kill studies (STKs) with different BLIs; and (3) a hollow fibre model system of TB (HFS-TB) studies with meropenem-vaborbactam combined with human equivalent daily doses of 20 mg/kg or 35 mg/kg rifampin, or moxifloxacin 400 mg, or linezolid 600 mg vs. bedaquiline-pretonamid-linezolid (BPaL) for MDR-TB. The studies were performed using Mycobacterium tuberculosis (M. tuberculosis) H37Rv and an MDR-TB clinical strain (named M. tuberculosis 16D) that underwent whole genome sequencing. Exponential decline models were used to calculate the kill rate constant (K) of different HFS-TB regimens. RESULTS Whole genome sequencing revealed mutations associated with resistance to rifampin, isoniazid, and cephalosporins. The meropenem-vaborbactam MIC of M. tuberculosis was H37Rv 2 mg/L and > 128 mg/L for M. tuberculosis 16D. Relebactam and vaborbactam improved both the potency and efficacy of meropenem in STKs. Meropenem-vaborbactam alone failed to kill M. tuberculosis 16D but killed below day 0 burden when combined with isoniazid and rifampin, with the moxifloxacin combination being the most effective and outranking bedaquiline and pretomanid. In the HFS-TB, meropenem-vaborbactam-moxifloxacin and BPaL had the highest K (log10 cfu/mL/day) of 0.31 (95% CI 0.17-0.58) and 0.34 (95% CI 0.21-0.56), while meropenem-vaborbactam-rifampin (35 mg/kg) had a K of 0.18 (95% CI 0.12-0.25). The K for meropenem-vaborbactam-moxifloxacin-linezolid demonstrated antagonism. CONCLUSION Adding meropenem-vaborbactam could potentially restore the efficacy of isoniazid and rifampin against MDR-TB. The meropenem-vaborbactam-moxifloxacin backbone regimen has implications for creating a new effective MDR-TB regimen.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, TX, USA
| | - Tawanda Gumbo
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA; Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc, Dallas, TX, USA
| | - Jan-Willem Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia; School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia; Westmead Hospital, Sydney, New South Wales, Australia
| | - Gunavanthi D Boorgula
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, TX, USA
| | - Prem Shankar
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, TX, USA
| | - Tania A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Keertan Dheda
- The Center for Lung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lesibana Malinga
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Prithvi Raj
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Santosh Aryal
- Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, USA
| | - Shashikant Srivastava
- Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, TX, USA; Department of Cellular and Molecular Biology, UT Health Science Centre at Tyler, Tyler, TX, US.
| |
Collapse
|
7
|
Bhagwat A, Deshpande A, Parish T. How Mycobacterium tuberculosis drug resistance has shaped anti-tubercular drug discovery. Front Cell Infect Microbiol 2022; 12:974101. [PMID: 36159638 PMCID: PMC9500310 DOI: 10.3389/fcimb.2022.974101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Drug resistance is an increasing problem for the treatment of tuberculosis. The prevalence of clinical isolates with pre-existing resistance needs to be considered in any drug discovery program. Non-specific mechanisms of resistance such as increased efflux or decreased permeability need to be considered both in developing individual drug candidates and when designing novel regimens. We review a number of different approaches to develop new analogs and drug combinations or improve efficacy of existing drugs that may overcome or delay the appearance of clinical resistance. We also discuss the need to fully characterize mechanisms of resistance and cross- resistance to existing drugs to ensure that novel drugs will be clinically effective.
Collapse
|
8
|
Moorey AR, Cabanillas A, Batt SM, Ghidelli-Disse S, Urones B, Sanz O, Lelievre J, Bantscheff M, Cox LR, Besra GS. The multi-target aspect of an MmpL3 inhibitor: The BM212 series of compounds bind EthR2, a transcriptional regulator of ethionamide activation. Cell Surf 2021; 7:100068. [PMID: 34888432 PMCID: PMC8634040 DOI: 10.1016/j.tcsw.2021.100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) ensures that drug discovery efforts remain at the forefront of TB research. There are multiple different experimental approaches that can be employed in the discovery of anti-TB agents. Notably, inhibitors of MmpL3 are numerous and structurally diverse in Mtb and have been discovered through the generation of spontaneous resistant mutants and subsequent whole genome sequencing studies. However, this approach is not always reliable and can lead to incorrect target assignment and requires orthogonal confirmatory approaches. In fact, many of these inhibitors have also been shown to act as multi-target agents, with secondary targets in Mtb, as well as in other non-MmpL3-containing pathogens. Herein, we have investigated further the cellular targets of the MmpL3-inhibitor BM212 and a number of BM212 analogues. To determine the alternative targets of BM212, which may have been masked by MmpL3 mutations, we have applied a combination of chemo-proteomic profiling using bead-immobilised BM212 derivatives and protein extracts, along with whole-cell and biochemical assays. The study identified EthR2 (Rv0078) as a protein that binds BM212 analogues. We further demonstrated binding of BM212 to EthR2 through an in vitro tryptophan fluorescence assay, which showed significant quenching of tryptophan fluorescence upon addition of BM212. Our studies have demonstrated the value of revisiting drugs with ambiguous targets, such as MmpL3, in an attempt to find alternative targets and the study of off-target effects to understand more precisely target engagement of new hits emerging from drug screening campaigns.
Collapse
Affiliation(s)
- Alice R Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Alejandro Cabanillas
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Beatriz Urones
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Olalla Sanz
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joel Lelievre
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Marcus Bantscheff
- Cellzome - a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
9
|
Bhattacharya S, Junghare V, Pandey NK, Baidya S, Agarwal H, Das N, Banerjee A, Ghosh D, Roy P, Patra HK, Hazra S. Variations in the SDN Loop of Class A Beta-Lactamases: A Study of the Molecular Mechanism of BlaC ( Mycobacterium tuberculosis) to Alter the Stability and Catalytic Activity Towards Antibiotic Resistance of MBIs. Front Microbiol 2021; 12:710291. [PMID: 34690953 PMCID: PMC8531524 DOI: 10.3389/fmicb.2021.710291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 12/05/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for an immediate search for novel treatment strategies. Recently, BlaC, the principal beta-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. BlaC belongs to Ambler class A, which is generally susceptible to the beta-lactamase inhibitors currently used in clinics: tazobactam, sulbactam, and clavulanate. Alterations at Ser130 in conserved SDN loop confer resistance to mechanism-based inhibitors (MBIs) commonly observed in various clinical isolates. The absence of clinical evidence of S130G conversion in M. tuberculosis draws our attention to build laboratory mutants of S130G and S130A of BlaC. The study involving steady state, inhibition kinetics, and fluorescence microscopy shows the emergence of resistance against MBIs to the mutants expressing S130G and S130A. To understand the molecular reasoning behind the unavailability of such mutation in real life, we have used circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC), molecular dynamics (MD) simulation, and stability-based enzyme activity to compare the stability and dynamic behaviors of native and S130G/A mutant form of BlaC. A significant decrease in melting temperature (BlaC TM 60°C, S130A TM 50°C, and S130G TM 45°C), kinetic instability at higher temperature, and comparative dynamic instability correlate the fact that resistance to beta-lactam/beta-lactamase inhibitor combinations will likely not arise from the structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be potentially applied as a part of a successful treatment regimen against M. tuberculosis.
Collapse
Affiliation(s)
- Sourya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vivek Junghare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Niteesh Kumar Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Subhecchha Baidya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Harsha Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladrisingha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ayan Banerjee
- Biochemistry and BIotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Debashish Ghosh
- Biochemistry and BIotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | - Saugata Hazra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
10
|
van Alen I, Chikunova A, Safeer AA, Ahmad MUD, Perrakis A, Ubbink M. The G132S Mutation Enhances the Resistance of Mycobacterium tuberculosis β-Lactamase against Sulbactam. Biochemistry 2021; 60:2236-2245. [PMID: 34250791 PMCID: PMC8383266 DOI: 10.1021/acs.biochem.1c00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The current rise
of antibiotic resistant forms of Mycobacterium
tuberculosis is a global health threat that calls for new
antibiotics. The β-lactamase BlaC of this pathogen prevents
the use of β-lactam antibiotics, except in combination with
a β-lactamase inhibitor. To understand if exposure to such inhibitors
can easily result in resistance, a BlaC evolution experiment was performed,
studying the evolutionary adaptability against the inhibitor sulbactam.
Several amino acid substitutions in BlaC were shown to confer reduced
sensitivity to sulbactam. The G132S mutation causes a reduction in
the rate of nitrocefin and ampicillin hydrolysis and simultaneously
reduces the sensitivity for sulbactam inhibition. Introduction of
the side chain moiety of Ser132 causes the 104–105 peptide
bond to assume the cis conformation and the side
chain of Ser104 to be rotated toward the sulbactam adduct with which
it forms a hydrogen bond not present in the wild-type enzyme. The
gatekeeper residue Ile105 also moves. These changes in the entrance
of the active site can explain the decreased affinity of G132S BlaC
for both substrates and sulbactam. Our results show that BlaC can
easily acquire a reduced sensitivity for sulbactam, with a single-amino
acid mutation, which could hinder the use of combination therapies.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Aleksandra Chikunova
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Adil A Safeer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Misbha Ud Din Ahmad
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
11
|
Stephanie F, Saragih M, Tambunan USF. Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment. Pharmaceutics 2021; 13:pharmaceutics13050592. [PMID: 33919204 PMCID: PMC8143172 DOI: 10.3390/pharmaceutics13050592] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022] Open
Abstract
Control of Mycobacterium tuberculosis infection continues to be an issue, particularly in countries with a high tuberculosis (TB) burden in the tropical and sub-tropical regions. The effort to reduce the catastrophic cost of TB with the WHO’s End TB Strategy in 2035 is still obstructed by the emergence of drug-resistant TB (DR-TB) cases as result of various mutations of the MTB strain. In the approach to combat DR-TB, several potential antitubercular agents were discovered as inhibitors for various existing and novel targets. Host-directed therapy and immunotherapy also gained attention as the drug-susceptibility level of the pathogen can be reduced due to the pathogen’s evolutionary dynamics. This review is focused on the current progress and challenges in DR-TB treatment. We briefly summarized antitubercular compounds that are under development and trials for both DR-TB drug candidates and host-directed therapy. We also highlighted several problems in DR-TB diagnosis, the treatment regimen, and drug discovery that have an impact on treatment adherence and treatment failure.
Collapse
|
12
|
Batt SM, Burke CE, Moorey AR, Besra GS. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surf 2020; 6:100044. [PMID: 32995684 PMCID: PMC7502851 DOI: 10.1016/j.tcsw.2020.100044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host's defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.
Collapse
Affiliation(s)
- Sarah M. Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher E. Burke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice R. Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
13
|
Abstract
Tuberculosis (TB) is one of the oldest health problems in the world and it remains unresolved. Multidrug-resistant-TB and extensively resistant-TB are a serious problem for control programs. The evaluation of available antibiotics has gained importance in recent years for the treatment of resistant TB. Beta-lactam antibiotics inhibit cell wall biosynthesis in the bacteria; the presence of beta-lactamase enzyme in TB bacilli raises the question of whether this group of antibiotics can be used in treatment. As a result, it has been reported that the combination of beta-lactam antibiotics with beta-lactamase is effective against Mycobacterium tuberculosis both in vitro and in vivo. The aim of this article is to review and discuss up-to-date knowledge and future perspective on beta-lactam antibiotics and TB.
Collapse
Affiliation(s)
- Mehmet Akif Gun
- Department of Medical Microbiology, Medical School, Ondokuz Mayis University, Samsun 55139, Turkey
| | - Bulent Bozdogan
- Recombinant DNA and Recombinant Protein Research Center (REDPROM), Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Ahmet Yilmaz Coban
- Tuberculosis Research Center, Akdeniz University, Antalya 07070, Turkey.,Department of Nutrition & Dietetics, Faculty of Health Sciences, Akdeniz University, Antalya 07070, Turkey
| |
Collapse
|
14
|
Fluorescent probes for investigating peptidoglycan biosynthesis in mycobacteria. Curr Opin Chem Biol 2020; 57:50-57. [DOI: 10.1016/j.cbpa.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 02/02/2023]
|
15
|
β-Lactamase of Mycobacterium tuberculosis Shows Dynamics in the Active Site That Increase upon Inhibitor Binding. Antimicrob Agents Chemother 2020; 64:AAC.02025-19. [PMID: 31871087 DOI: 10.1128/aac.02025-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis β-lactamase BlaC is a broad-spectrum β-lactamase that can convert a range of β-lactam antibiotics. Enzymes with low specificity are expected to exhibit active-site flexibility. To probe the motions in BlaC, we studied the dynamic behavior in solution using nuclear magnetic resonance (NMR) spectroscopy. 15N relaxation experiments show that BlaC is mostly rigid on the pico- to nanosecond timescale. Saturation transfer experiments indicate that also on the high-millisecond timescale BlaC is not dynamic. Using relaxation dispersion experiments, clear evidence was obtained for dynamics in the low-millisecond range, with an exchange rate of ca. 860 s-1 The dynamic amide groups are localized in the active site. Upon formation of an adduct with the inhibitor avibactam, extensive line broadening occurs, indicating an increase in magnitude of the active-site dynamics. Furthermore, the rate of the motions increases significantly. Upon reaction with the inhibitor clavulanic acid, similar line broadening is accompanied by duplication of NMR signals, indicative of at least one additional, slower exchange process (exchange rate, k ex, of <100 s-1), while for this inhibitor also loss of pico- to nanosecond timescale rigidity is observed for some amides in the α domain. Possible sources of the observed dynamics, such as motions in the omega loop and rearrangements of active-site residues, are discussed. The increase in dynamics upon ligand binding argues against a model of inhibitor binding through conformational selection. Rather, the induced dynamics may serve to maximize the likelihood of sampling the optimal conformation for hydrolysis of the bound ligand.
Collapse
|
16
|
Lopez Quezada L, Li K, McDonald SL, Nguyen Q, Perkowski AJ, Pharr CW, Gold B, Roberts J, McAulay K, Saito K, Somersan Karakaya S, Javidnia PE, Porras de Francisco E, Amieva MM, Dı́az SP, Mendoza Losana A, Zimmerman M, Liang HPH, Zhang J, Dartois V, Sans S, Lagrange S, Goullieux L, Roubert C, Nathan C, Aubé J. Dual-Pharmacophore Pyrithione-Containing Cephalosporins Kill Both Replicating and Nonreplicating Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:1433-1445. [PMID: 31184461 DOI: 10.1021/acsinfecdis.9b00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The historical view of β-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a β-lactamase inhibitor. However, most antimycobacterial β-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 β-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a β-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A β-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent β-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.
Collapse
Affiliation(s)
- Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Andrew J. Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Cameron W. Pharr
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Kathrine McAulay
- Center for Global Health, Weill Cornell Medicine, 402 East 67th Street, New York, New York 10065, United States
- Les Centres GHESKIO, 33, Boulevard Harry Truman, Port-au-Prince, Haiti
| | - Kohta Saito
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Selin Somersan Karakaya
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Prisca Elis Javidnia
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Esther Porras de Francisco
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Manuel Marin Amieva
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Palomo Dı́az
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Alfonso Mendoza Losana
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Hsin-Pin Ho Liang
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Jun Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Veronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Stéphanie Sans
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Sophie Lagrange
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Laurent Goullieux
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Christine Roubert
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Amoxicillin-Clavulanate in Tuberculosis Disease. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2019. [DOI: 10.1097/ipc.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma. J Antibiot (Tokyo) 2019; 72:469-475. [PMID: 30903100 PMCID: PMC7255492 DOI: 10.1038/s41429-019-0167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 11/23/2022]
Abstract
A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse plasma.
Collapse
|
19
|
Libreros-Zúñiga GA, dos Santos Silva C, Salgado Ferreira R, Dias MVB. Structural Basis for the Interaction and Processing of β-Lactam Antibiotics by l,d-Transpeptidase 3 (Ldt Mt3) from Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:260-271. [PMID: 30556998 DOI: 10.1021/acsinfecdis.8b00244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting Mycobacterium tuberculosis peptidoglycans with β-lactam antibiotics represents a strategy to address increasing resistance to antitubercular drugs. β-Lactams inhibit peptidoglycan synthases such as l,d-transpeptidases, a group of carbapenem-sensitive enzymes that stabilize peptidoglycans through 3 → 3 cross-links. M. tuberculosis encodes five l,d-transpeptidases (LdtMt1-5), of which LdtMt3 is one of the less understood. Herein, we structurally characterized the apo and faropenem-acylated forms of LdtMt3 at 1.3 and 1.8 Å resolution, respectively. These structures revealed a fold and catalytic diad similar to those of other LdtsMt enzymes, supporting its involvement in transpeptidation reactions despite divergences in active site size and charges. The LdtMt3-faropenem structure indicated that faropenem is degraded after Cys-246 acylation, and possibly only a β-OH-butyrate or an acetyl group (C2H3O) covalently attached to the enzyme remains, an observation that strongly supports the notion that LdtMt3 is inactivated by β-lactams. Docking simulations with intact β-lactams predicted key LdtMt3 residues that interact with these antibiotics. We also characterized the heat of acylation involved in the binding and reaction of LdtMt3 for ten β-lactams belonging to four different classes, and imipenem had the highest inactivation constant. This work provides key insights into the structure, binding mechanisms, and degradation of β-lactams by LdtMt3, which may be useful for the development of additional β-lactams with potential antitubercular activity.
Collapse
Affiliation(s)
- Gerardo Andrés Libreros-Zúñiga
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1374 São Paulo, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265 São José do Rio Preto, Brazil
- Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Calle 4B No. 36-00 Cali, Colombia
| | - Catharina dos Santos Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1374 São Paulo, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Belo Horizonte, Brazil
| | - Marcio Vinicius Bertacine Dias
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1374 São Paulo, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265 São José do Rio Preto, Brazil
| |
Collapse
|
20
|
Ufimtseva E, Eremeeva N, Bayborodin S, Umpeleva T, Vakhrusheva D, Skornyakov S. Mycobacterium tuberculosis with different virulence reside within intact phagosomes and inhibit phagolysosomal biogenesis in alveolar macrophages of patients with pulmonary tuberculosis. Tuberculosis (Edinb) 2018; 114:77-90. [PMID: 30711161 DOI: 10.1016/j.tube.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is a dangerous airborne disease caused by Mycobacterium tuberculosis (Mtb) and characterized by a tight interplay between pathogen and host cells, mainly alveolar macrophages. Studies of the mechanisms of Mtb survival within human cells during TB disease are extremely important for the development of new strategies and drugs for TB treatment. We have used the ex vivo cultures of alveolar macrophages and histological sections obtained from the resected lungs of patients with pulmonary TB to establish the unique features of Mtb lifestyle in host cells. Our data indicate that Mtb with different virulence, as single and in colonies, with or without cording morphology, are exclusively intravacuolar pathogens with intact phagosomal membranes in viable host cells of TB patients and Mtb-infected guinea pig. Mycobacteria were detected in the cytoplasm and/or damaged vacuoles only in alveolar macrophages with morphological signs of cell death after prolonged ex vivo culture, however Mtb were found inside phagosomes in viable alveolar macrophages or cells with apoptotic/necrotic morphology in the same ex vivo cell culture. The Mtb phagosomes interacted with human different endocytic pathways, but inhibited phagolysosomal biogenesis, while intracellular vesicles containing Mtb products were fused with lysosomes in the same host cells.
Collapse
Affiliation(s)
- Elena Ufimtseva
- Laboratory of Medical Biotechnology, Research Institute of Biochemistry, Federal Research Center of Fundamental and Translational Medicine, 2 Timakova Street, 630117, Novosibirsk, Russia; Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Natalya Eremeeva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Sergey Bayborodin
- Shared Center for Microscopic Analysis of Biological Objects, Federal Research Center Institute of Cytology and Genetics, 10 Lavrentyeva Prospect, 630090, Novosibirsk, Russia.
| | - Tatiana Umpeleva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Diana Vakhrusheva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Sergey Skornyakov
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| |
Collapse
|
21
|
Smith PW, Zuccotto F, Bates RH, Martinez-Martinez MS, Read KD, Peet C, Epemolu O. Pharmacokinetics of β-Lactam Antibiotics: Clues from the Past To Help Discover Long-Acting Oral Drugs in the Future. ACS Infect Dis 2018; 4:1439-1447. [PMID: 30141902 PMCID: PMC6189874 DOI: 10.1021/acsinfecdis.8b00160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 01/03/2023]
Abstract
β-Lactams represent perhaps the most important class of antibiotics yet discovered. However, despite many years of active research, none of the currently approved drugs in this class combine oral activity with long duration of action. Recent developments suggest that new β-lactam antibiotics with such a profile would have utility in the treatment of tuberculosis. Consequently, the historical β-lactam pharmacokinetic data have been compiled and analyzed to identify possible directions and drug discovery strategies aimed toward new β-lactam antibiotics with this profile.
Collapse
Affiliation(s)
| | - Fabio Zuccotto
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Robert H. Bates
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | | | - Kevin D. Read
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Caroline Peet
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Ola Epemolu
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| |
Collapse
|
22
|
Kaplan SR, Topal J, Sosa L, Malinis M, Huttner A, Malhotra A, Friedland G. A patient with central nervous system tuberculomas and a history of disseminated multi-drug-resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2018; 10:9-16. [PMID: 31720380 PMCID: PMC6830180 DOI: 10.1016/j.jctube.2017.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, particularly in low- and middle-income countries. The global rates and numbers of drug resistant TB are rising. With increasing globalization, the spread of drug-resistant strains of TB has become a mounting global public health concern. We present a case of a young man previously treated for multi-drug resistant (MDR) TB in India who presented with neurological symptoms and central nervous system TB in the United States. His case highlights unique diagnostic and treatment challenges that are likely to become more commonplace with the increase of patients infected with drug-resistant TB and complicated extrapulmonary disease.
Collapse
Key Words
- AFB, acid-fast bacilli
- BAL, bronchoalveolar lavage
- Bedaquiline
- CNS, central nervous system
- CSF, cerebrospinal fluid
- CT, computerized tomography
- Central nervous system (CNS) TB
- DOT, directly observed therapy
- DST, drug susceptibility testing
- Extensively drug-resistant tuberculosis (XDR-TB)
- FDA, Food and Drug Administration
- IV, intravenous
- LUL, left upper lobe
- MDR-TB, multidrug-resistant tuberculosis
- MRI, magnetic resonance imaging
- Multi-drug resistant tuberculosis (MDR-TB)
- TB, tuberculosis
- Tuberculoma
- Tuberculosis (TB)
- WHO, World Health Organization
- XDR-TB, extensively drug-resistant tuberculosis
Collapse
Affiliation(s)
- Samantha R. Kaplan
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, 135 College St, New Haven, CT 06510, United States
| | - Jeffrey Topal
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, 135 College St, New Haven, CT 06510, United States
| | - Lynn Sosa
- Connecticut Department of Public Health, 410 Capitol Avenue, Hartford, CT 06134, United States
| | - Maricar Malinis
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, 135 College St, New Haven, CT 06510, United States
| | - Anita Huttner
- Yale School of Medicine, Department of Pathology, 333 Cedar St, New Haven, CT 06510, United States
| | - Ajay Malhotra
- Yale School of Medicine, Department of Radiology, 333 Cedar St, New Haven, CT 06510, United States
| | - Gerald Friedland
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, 135 College St, New Haven, CT 06510, United States
| |
Collapse
|
23
|
Elings W, Tassoni R, van der Schoot SA, Luu W, Kynast JP, Dai L, Blok AJ, Timmer M, Florea BI, Pannu NS, Ubbink M. Phosphate Promotes the Recovery of Mycobacterium tuberculosis β-Lactamase from Clavulanic Acid Inhibition. Biochemistry 2017; 56:6257-6267. [PMID: 29087696 PMCID: PMC5707625 DOI: 10.1021/acs.biochem.7b00556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The rise of multi-
and even totally antibiotic resistant forms
of Mycobacterium tuberculosis underlines the need
for new antibiotics. The pathogen is resistant to β-lactam compounds
due to its native serine β-lactamase, BlaC. This resistance
can be circumvented by administration of a β-lactamase inhibitor.
We studied the interaction between BlaC and the inhibitor clavulanic
acid. Our data show hydrolysis of clavulanic acid and recovery of
BlaC activity upon prolonged incubation. The rate of clavulanic acid
hydrolysis is much higher in the presence of phosphate ions. A specific
binding site for phosphate is identified in the active site pocket,
both in the crystalline state and in solution. NMR spectroscopy experiments
show that phosphate binds to this site with a dissociation constant
of 30 mM in the free enzyme. We conclude that inhibition of BlaC by
clavulanic acid is reversible and that phosphate ions can promote
the hydrolysis of the inhibitor.
Collapse
Affiliation(s)
- Wouter Elings
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Raffaella Tassoni
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | | | - Wendy Luu
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Josef P Kynast
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Lin Dai
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Anneloes J Blok
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Navraj S Pannu
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, Leiden, The Netherlands
| |
Collapse
|
24
|
Cavanaugh JS, Jou R, Wu MH, Dalton T, Kurbatova E, Ershova J, Cegielski JP. Susceptibilities of MDR Mycobacterium tuberculosis isolates to unconventional drugs compared with their reported pharmacokinetic/pharmacodynamic parameters. J Antimicrob Chemother 2017; 72:1678-1687. [PMID: 28333192 DOI: 10.1093/jac/dkx022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
Background The second-line drugs recommended to treat drug-resistant TB are toxic, expensive and difficult to procure. Given increasing resistance, the need for additional anti-TB drugs has become more urgent. But new drugs take time to develop and are expensive. Some commercially available drugs have reported anti-mycobacterial activity but are not routinely used because supporting laboratory and clinical evidence is sparse. Methods We analysed 217 MDR M. tuberculosis isolates including 153 initial isolates from unique patients and 64 isolates from follow-up specimens during the course of treatment. The resazurin microdilution assay was performed to determine MICs of trimethoprim/sulfamethoxazole, mefloquine, thioridazine, clofazimine, amoxicillin/clavulanate, meropenem/clavulanate, nitazoxanide, linezolid and oxyphenbutazone. Isoniazid was used for validation. We calculated the MIC 50 and MIC 90 as the MICs at which growth of 50% and 90% of isolates was inhibited, respectively. Results The MIC 50 s, in mg/L, for initial isolates were as follows: trimethoprim/sulfamethoxazole, 0.2/4; mefloquine, 8; thioridazine, 4; clofazimine, 0.25; amoxicillin/clavulanate, 16/8; meropenem/clavulanate, 1/2.5; nitazoxanide, 16; linezolid, 0.25; and oxyphenbutazone, 40. The MIC 90 s, in mg/L, for initial isolates were as follows: trimethoprim/sulfamethoxazole, 0.4/8; mefloquine, 8; thioridazine, 8; clofazimine, 0.5; amoxicillin/clavulanate, 32/16; meropenem/clavulanate, 8/2.5; nitazoxanide, 16; linezolid, 0.25; and oxyphenbutazone, 60. By comparison, the MIC 90 of isoniazid was >4 mg/L, as expected. There was no evidence that previous treatment affected susceptibility to any drug. Conclusions Most drugs demonstrated efficacy against M. tuberculosis . When these MICs are compared with the published pharmacokinetic/pharmacodynamic profiles of the respective drugs in humans, trimethoprim/sulfamethoxazole, meropenem/clavulanate, linezolid, clofazimine and nitazoxanide appear promising and warrant further clinical investigation.
Collapse
Affiliation(s)
- Joseph S Cavanaugh
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ruwen Jou
- Taiwan Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Mei-Hua Wu
- Taiwan Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Tracy Dalton
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Julia Ershova
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - J Peter Cegielski
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
25
|
A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clin Microbiol Rev 2016; 29:29-57. [PMID: 26511485 DOI: 10.1128/cmr.00019-15] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For medical biologists, sequencing has become a commonplace technique to support diagnosis. Rapid changes in this field have led to the generation of large amounts of data, which are not always correctly listed in databases. This is particularly true for data concerning class A β-lactamases, a group of key antibiotic resistance enzymes produced by bacteria. Many genomes have been reported to contain putative β-lactamase genes, which can be compared with representative types. We analyzed several hundred amino acid sequences of class A β-lactamase enzymes for phylogenic relationships, the presence of specific residues, and cluster patterns. A clear distinction was first made between dd-peptidases and class A enzymes based on a small number of residues (S70, K73, P107, 130SDN132, G144, E166, 234K/R, 235T/S, and 236G [Ambler numbering]). Other residues clearly separated two main branches, which we named subclasses A1 and A2. Various clusters were identified on the major branch (subclass A1) on the basis of signature residues associated with catalytic properties (e.g., limited-spectrum β-lactamases, extended-spectrum β-lactamases, and carbapenemases). For subclass A2 enzymes (e.g., CfxA, CIA-1, CME-1, PER-1, and VEB-1), 43 conserved residues were characterized, and several significant insertions were detected. This diversity in the amino acid sequences of β-lactamases must be taken into account to ensure that new enzymes are accurately identified. However, with the exception of PER types, this diversity is poorly represented in existing X-ray crystallographic data.
Collapse
|
26
|
|
27
|
Kurz SG, Hazra S, Bethel CR, Romagnoli C, Caselli E, Prati F, Blanchard JS, Bonomo RA. Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with Novel Boronic Acid Transition-State Inhibitors (BATSIs). ACS Infect Dis 2015; 1:234-42. [PMID: 27622739 DOI: 10.1021/acsinfecdis.5b00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BlaC, the single chromosomally encoded β-lactamase of Mycobacterium tuberculosis, has been identified as a promising target for novel therapies that rely upon β-lactamase inhibition. Boronic acid transition-state inhibitors (BATSIs) are a class of β-lactamase inhibitors which permit rational inhibitor design by combinations of various R1 and R2 side chains. To explore the structural determinants of effective inhibition, we screened a panel of 25 BATSIs to explore key structure-function relationships. We identified a cefoperazone analogue, EC19, which displayed slow, time-dependent inhibition against BlaC with a potency similar to that of clavulanate (Ki* of 0.65 ± 0.05 μM). To further characterize the molecular basis of inhibition, we solved the crystallographic structure of the EC19-BlaC(N172A) complex and expanded our analysis to variant enzymes. The results of this structure-function analysis encourage the design of a novel class of β-lactamase inhibitors, BATSIs, to be used against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Sebastian G. Kurz
- Department of Medicine, Tufts Medical Center, 600 Washington Street, No. 257, Boston, Massachusetts 02111, United States
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand 247667, India
| | - Christopher R. Bethel
- Research Service, Louis
Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Chiara Romagnoli
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Emilia Caselli
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Fabio Prati
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - John S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Robert A. Bonomo
- Research Service, Louis
Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| |
Collapse
|
28
|
Egesborg P, Carlettini H, Volpato JP, Doucet N. Combinatorial active-site variants confer sustained clavulanate resistance in BlaC β-lactamase from Mycobacterium tuberculosis. Protein Sci 2014; 24:534-44. [PMID: 25492589 DOI: 10.1002/pro.2617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/03/2014] [Indexed: 11/10/2022]
Abstract
Bacterial resistance to β-lactam antibiotics is a global issue threatening the success of infectious disease treatments worldwide. Mycobacterium tuberculosis has been particularly resilient to β-lactam treatment, primarily due to the chromosomally encoded BlaC β-lactamase, a broad-spectrum hydrolase that renders ineffective the vast majority of relevant β-lactam compounds currently in use. Recent laboratory and clinical studies have nevertheless shown that specific β-lactam-BlaC inhibitor combinations can be used to inhibit the growth of extensively drug-resistant strains of M. tuberculosis, effectively offering new tools for combined treatment regimens against resistant strains. In the present work, we performed combinatorial active-site replacements in BlaC to demonstrate that specific inhibitor-resistant (IRT) substitutions at positions 69, 130, 220, and/or 234 can act synergistically to yield active-site variants with several thousand fold greater in vitro resistance to clavulanate, the most common clinical β-lactamase inhibitor. While most single and double variants remain sensitive to clavulanate, double mutants R220S-K234R and S130G-K234R are substantially less affected by time-dependent clavulanate inactivation, showing residual β-lactam hydrolytic activities of 46% and 83% after 24 h incubation with a clinically relevant inhibitor concentration (5 μg/ml, 25 µM). These results demonstrate that active-site alterations in BlaC yield resistant variants that remain active and stable over prolonged bacterial generation times compatible with mycobacterial proliferation. These results also emphasize the formidable adaptive potential of inhibitor-resistant substitutions in β-lactamases, potentially casting a shadow on specific β-lactam-BlaC inhibitor combination treatments against M. tuberculosis.
Collapse
Affiliation(s)
- Philippe Egesborg
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7, Canada
| | | | | | | |
Collapse
|
29
|
Wu X, Zhao Y, Ge H. Nickel-Catalyzed Site-Selective Amidation of Unactivated C(sp3)H Bonds. Chemistry 2014; 20:9530-3. [DOI: 10.1002/chem.201403356] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 11/07/2022]
|
30
|
Wu X, Zhao Y, Zhang G, Ge H. Copper-Catalyzed Site-Selective Intramolecular Amidation of Unactivated C(sp3)H Bonds. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311263] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Wu X, Zhao Y, Zhang G, Ge H. Copper-Catalyzed Site-Selective Intramolecular Amidation of Unactivated C(sp3)H Bonds. Angew Chem Int Ed Engl 2014; 53:3706-10. [DOI: 10.1002/anie.201311263] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Indexed: 11/05/2022]
|
32
|
Chow C, Xu H, Blanchard JS. Kinetic characterization of hydrolysis of nitrocefin, cefoxitin, and meropenem by β-lactamase from Mycobacterium tuberculosis. Biochemistry 2013; 52:4097-104. [PMID: 23672214 DOI: 10.1021/bi400177y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The constitutively expressed, chromosomally encoded β-lactamase (BlaC) is the enzyme responsible for the intrinsic resistance to β-lactam antibiotics in Mycobacterium tuberculosis. Previous studies from this laboratory have shown that the enzyme exhibits an extended-spectrum phenotype, with very high levels of penicillinase and cephalosporinase activity, as well as weak carbapenemase activity [Tremblay, L. W., et al. (2008) Biochemistry 47, 5312-5316]. In this report, we have determined the pH dependence of the kinetic parameters, revealing that the maximal velocity depends on the ionization state of two groups: a general base exhibiting a pK value of 4.5 and a general acid exhibiting a pK value of 7.8. Having defined a region where the kinetic parameters are pH-independent (pH 6.5), we determined solvent kinetic isotope effects (SKIEs) for three substrates whose kcat values differ by 5.5 orders of magnitude. Nitrocefin is a highly activated, chromogenic cephalosporin derivative that exhibits steady-state solvent kinetic isotope effects of 1.4 on both V and V/K. Cefoxitin is a slower cephalosporin derivative that exhibits a large SKIE on V of 3.9 but a small SKIE of 1.8 on V/K in steady-state experiments. Pre-steady-state, stopped-flow experiments with cefoxitin revealed a burst of β-lactam ring opening with associated SKIE values of 1.6 on the acylation step and 3.4 on the deacylation step. Meropenem is an extremely slow substrate for BlaC and exhibits burst kinetics in the steady-state experiments. SKIE determinations with meropenem revealed large SKIEs on both the acylation and deacylation steps of 3.8 and 4.0, respectively. Proton inventories in all cases were linear, indicating the participation of a single solvent-derived proton in the chemical step responsible for the SKIE. The rate-limiting steps for β-lactam hydrolysis of these substrates are analyzed, and the chemical steps responsible for the observed SKIE are discussed.
Collapse
Affiliation(s)
- Carmen Chow
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
33
|
Nguyen L, Jacobs MR. Counterattacking drug-resistant tuberculosis: molecular strategies and future directions. Expert Rev Anti Infect Ther 2013; 10:959-61. [PMID: 23106270 DOI: 10.1586/eri.12.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Liem Nguyen
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
34
|
Involvement of efflux pumps in the resistance to peptidoglycan synthesis inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2013; 57:1941-3. [PMID: 23335736 DOI: 10.1128/aac.01957-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the contributions of Mycobacterium tuberculosis efflux pumps towards intrinsic resistance to different classes of peptidoglycan synthesis inhibitors (PSI). Our study indicates that the efflux pump knockout strains are more susceptible to PSI than the wild type. Vancomycin and ceftriaxone exhibited up to 3 log increased kill on efflux pump mutants compared to the wild-type strain, strongly suggesting an important role for efflux pumps in the intrinsic resistance of M. tuberculosis to PSI.
Collapse
|