1
|
Miller PG, Huang E, Fisher R, Shuler ML. Development of a Microphysiological System to Model Human Cancer Metastasis From the Colon to the Liver. Biotechnol Bioeng 2025; 122:481-494. [PMID: 39587032 PMCID: PMC11810609 DOI: 10.1002/bit.28890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
We describe a novel device to mimic the metastasis of cancer cells from the colon into the liver in a human model. The colon mimic is connected to the liver model by a gravity-driven recirculating unidirectional flow of a blood surrogate and can mimic the five steps of the metastatic cascade: invasion in the colon, intravasation into the bloodstream, systemic transportation, extravasation into the liver, and colonization in the liver. The colon mimic uses established normal colon epithelial organoid cells (NL) and human umbilical vein endothelial cells (HUVEC) plated on opposite sides of a membrane. To better mimic the colon structure the NL side of the membrane is exposed to air to establish an air-liquid interface. The liver mimic consists of human liver sinusoidal endothelial cells (HHSEC) and epithelial hepatic cells (HepG2 C3A) plated in Matrigel on opposite sides of a membrane. Labeled colorectal cancer cells/clusters (CA) from organoids are introduced into an established normal colon epithelial cell (NL) layer from the same patient before assembly of the system or alternatively NL organoids and fluorescently labeled CA organoids from the same patient were prepared as a ratio of 10:1 NL:CA and established together before assembly of the system. Cell viability is greater than 85% in this system. We demonstrate that over 5 days of operation that the five steps of the metastatic cascade are replicated. This novel device allows an in vitro estimate of metastatic capability (as measured by using percentages of the labeled areas per device through ImageJ) in response to selected variables. In this study, the metastatic capability depends on the source of cancer cells (e.g., the patient), the clumping of cancer cells, glucose concentration, and oxygen levels (hypoxia). For the first time, this new in vitro system mimics all five steps of the metastatic cascade in a single device and provides a new device to probe and observe the process of metastasis in a human-based model in only 5 days. The rapid observation is due to the use of a high concentration of cancer cells in the colon (e.g. 10%) and the absence of the immune system. Our device makes it possible to probe aspects of each step of metastasis and interactions between steps.
Collapse
Affiliation(s)
- Paula G. Miller
- Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14883, USA
| | - Emina Huang
- Department of Surgery, UT Southwestern Medical Center, NB5.226, 5323 Harry Hines Blvd., Dallas, Texas 75390-8845
| | - Robert Fisher
- Department of Surgery, UT Southwestern Medical Center, NB5.226, 5323 Harry Hines Blvd., Dallas, Texas 75390-8845
| | - Michael L. Shuler
- Department of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14883, USA
| |
Collapse
|
2
|
Gu J, Jian H, Wei C, Shiu J, Ganesan A, Zhao W, Hedde PN. A Low-Cost Modular Imaging System for Rapid, Multiplexed Immunofluorescence Detection in Clinical Tissues. Int J Mol Sci 2023; 24:7008. [PMID: 37108170 PMCID: PMC10138925 DOI: 10.3390/ijms24087008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
To image 4-plex immunofluorescence-stained tissue samples at a low cost with cellular level resolution and sensitivity and dynamic range required to detect lowly and highly abundant targets, here we describe a robust, inexpensive (<$9000), 3D printable portable imaging device (Tissue Imager). The Tissue Imager can immediately be deployed on benchtops for in situ protein detection in tissue samples. Applications for this device are broad, ranging from answering basic biological questions to clinical pathology, where immunofluorescence can detect a larger number of markers than the standard H&E or chromogenic immunohistochemistry (CIH) staining, while the low cost also allows usage in classrooms. After characterizing our platform's specificity and sensitivity, we demonstrate imaging of a 4-plex immunology panel in human cutaneous T-cell lymphoma (CTCL) formalin-fixed paraffin-embedded (FFPE) tissue samples. From those images, positive cells were detected using CellProfiler, a popular open-source software package, for tumor marker profiling. We achieved a performance on par with commercial epifluorescence microscopes that are >10 times more expensive than our Tissue Imager. This device enables rapid immunofluorescence detection in tissue sections at a low cost for scientists and clinicians and can provide students with a hands-on experience to understand engineering and instrumentation. We note that for using the Tissue Imager as a medical device in clinical settings, a comprehensive review and approval processes would be required.
Collapse
Affiliation(s)
- Joshua Gu
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Hannah Jian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Christine Wei
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Jessica Shiu
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Anand Ganesan
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Dermatology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - Weian Zhao
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Per Niklas Hedde
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Shin E, Koo JS. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol 2021; 9:728759. [PMID: 34552932 PMCID: PMC8450384 DOI: 10.3389/fcell.2021.728759] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and is associated with high mortality rates despite the continuously advancing treatment strategies. Glucose is essential for cancer cell metabolism owing to the Warburg effect. During the process of glucose metabolism, various glycolytic metabolites, such as serine and glycine metabolites, are produced and other metabolic pathways, such as the pentose phosphate pathway (PPP), are associated with the process. Glucose is transported into the cell by glucose transporters, such as GLUT. Breast cancer shows high expressions of glucose metabolism-related enzymes and GLUT, which are also related to breast cancer prognosis. Triple negative breast cancer (TNBC), which is a high-grade breast cancer, is especially dependent on glucose metabolism. Breast cancer also harbors various stromal cells such as cancer-associated fibroblasts and immune cells as tumor microenvironment, and there exists a metabolic interaction between these stromal cells and breast cancer cells as explained by the reverse Warburg effect. Breast cancer is heterogeneous, and, consequently, its metabolic status is also diverse, which is especially affected by the molecular subtype, progression stage, and metastatic site. In this review, we will focus on glucose metabolism and glucose transporters in breast cancer, and we will additionally discuss their potential applications as cancer imaging tracers and treatment targets.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Lin X, Xiao Z, Chen T, Liang SH, Guo H. Glucose Metabolism on Tumor Plasticity, Diagnosis, and Treatment. Front Oncol 2020; 10:317. [PMID: 32211335 PMCID: PMC7069415 DOI: 10.3389/fonc.2020.00317] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
Malignant cells support tumor proliferation and progression by adopting to metabolic changes. Tumor cells altered metabolism by increasing glucose uptake and fermentation of glucose to lactate, even in the aerobic state and the presence of functioning mitochondria. Glucose metabolism in tumor plasticity has attracted great interests by clinicians and scientists in the past decades. This review discusses the previous and emerging researches on the tumor plasticity altered by changing glucose metabolism in different cancer cells, including cancer stem cells (CSCs). In addition, we summarize the rising applications of glucose metabolism in tumor diagnosis and treatment. Our objective is to direct future investigation on this altered metabolic phenotype and its application in patient care.
Collapse
Affiliation(s)
- Xiaoping Lin
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Zizheng Xiao
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Chen
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Huiqin Guo
- Department of Thoracic Surgery, Beijing Sijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Zhang J, Hao G, Yao C, Yu J, Wang J, Yang W, Hu C, Zhang B. Albumin-Mediated Biomineralization of Paramagnetic NIR Ag2S QDs for Tiny Tumor Bimodal Targeted Imaging in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16612-16621. [PMID: 27300300 DOI: 10.1021/acsami.6b04738] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bimodal imaging has captured increasing interests due to its complementary characteristics of two kinds of imaging modalities. Among the various dual-modal imaging techniques, MR/fluorescence imaging has been widely studied owing to its high 3D resolution and sensitivity. There is, however, still a strong demand to construct biocompatible MR/fluorescence contrast agents with near-infrared (NIR) fluorescent emissions and high relaxivities. In this study, BSA-DTPA(Gd) derived from bovine serum albumin (BSA) as a novel kind of biotemplate is employed for biomineralization of paramagnetic NIR Ag2S quantum dots (denoted as Ag2S@BSA-DTPA(Gd) pQDs). This synthetic strategy is found to be bioinspired, environmentally benign, and straightforward. The obtained Ag2S@BSA-DTPA(Gd) pQDs have fine sizes (ca. 6 nm) and good colloidal stability. They exhibit unabated NIR fluorescent emission (ca. 790 nm) as well as high longitudinal relaxivity (r1 = 12.6 mM(-1) s(-1)) compared to that of commercial Magnevist (r1 = 3.13 mM(-1) s(-1)). In vivo tumor-bearing MR and fluorescence imaging both demonstrate that Ag2S@BSA-DTPA(Gd) pQDs have pronounced tiny tumor targeting capability. In vitro and in vivo toxicity study show Ag2S@BSA-DTPA(Gd) pQDs are biocompatible. Also, biodistribution analysis indicates they can be cleared from body mainly via liver metabolism. This protein-mediated biomineralized Ag2S@BSA-DTPA(Gd) pQDs presents great potential as a novel bimodal imaging contrast agent for tiny tumor diagnosis.
Collapse
Affiliation(s)
- Jing Zhang
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Guangyu Hao
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Chenfei Yao
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Jiani Yu
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Jun Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Weitao Yang
- School of Materials Science and Engineering, School of Life Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Chunhong Hu
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| |
Collapse
|
6
|
Simões RV, Serganova IS, Kruchevsky N, Leftin A, Shestov AA, Thaler HT, Sukenick G, Locasale JW, Blasberg RG, Koutcher JA, Ackerstaff E. Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment. Neoplasia 2016; 17:671-84. [PMID: 26408259 PMCID: PMC4674487 DOI: 10.1016/j.neo.2015.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 02/04/2023] Open
Abstract
Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR) to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of (13)C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA) cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS) in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only) > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells), leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1) provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2) lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.
Collapse
Affiliation(s)
- Rui V Simões
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Inna S Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Natalia Kruchevsky
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Avigdor Leftin
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Alexander A Shestov
- Division of Nutritional Sciences, Cornell University, 14853, Ithaca, NY, USA
| | - Howard T Thaler
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - George Sukenick
- NMR Core Facility, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, 14853, Ithaca, NY, USA
| | - Ronald G Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Jason A Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA; Weill Cornell Medical College, Cornell University, 10065, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA.
| |
Collapse
|
7
|
Bohndiek SE, Sasportas LS, Machtaler S, Jokerst JV, Hori S, Gambhir SS. Photoacoustic Tomography Detects Early Vessel Regression and Normalization During Ovarian Tumor Response to the Antiangiogenic Therapy Trebananib. J Nucl Med 2015; 56:1942-7. [PMID: 26315834 DOI: 10.2967/jnumed.115.160002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/05/2015] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The primary aim of this study was to assess the potential of in vivo photoacoustic tomography for direct functional measurement of ovarian tumor response to antiangiogenic therapy. METHODS In vivo studies were performed with institutional animal care and use committee approval. We used an orthotopic mouse model of ovarian cancer treated with trebananib (n = 9) or vehicle (n = 9). Tumor-bearing mice were randomized into trebananib or vehicle groups at day 10 and dosed on days 12, 15, and 18 after implantation. Photoacoustic tomography and blood draws were performed at day 10 and then 24 h after each drug dose. Tumors were excised for histopathology after the final studies on day 19. Data analysis to test for statistical significance was performed blinded. RESULTS Blockade of angiopoietin signaling using trebananib resulted in reduced total hemoglobin-weighted photoacoustic signal (n = 9, P = 0.01) and increased oxyhemoglobin-weighted photoacoustic signal (n = 9, P < 0.01). The latter observation indicated normalization of the residual tumor vessels, which was also implied by low levels of angiopoietin 1 in serum biomarker profiling (0.76 ± 0.12 ng/mL). These noninvasive measures reflected a 30% reduction in microvessel density and increased vessel maturation in ex vivo sections. CONCLUSION Photoacoustic tomography is able to evaluate both vessel regression and normalization in response to trebananib. Noninvasive imaging data were supported by modulation of serum markers in vitro and ex vivo histopathology.
Collapse
Affiliation(s)
- Sarah E Bohndiek
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Laura S Sasportas
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Steven Machtaler
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jesse V Jokerst
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Sharon Hori
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Sanjiv S Gambhir
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
8
|
Lin G, Chung YL. Current opportunities and challenges of magnetic resonance spectroscopy, positron emission tomography, and mass spectrometry imaging for mapping cancer metabolism in vivo. BIOMED RESEARCH INTERNATIONAL 2014; 2014:625095. [PMID: 24724090 PMCID: PMC3958648 DOI: 10.1155/2014/625095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/06/2014] [Accepted: 01/19/2014] [Indexed: 12/18/2022]
Abstract
Cancer is known to have unique metabolic features such as Warburg effect. Current cancer therapy has moved forward from cytotoxic treatment to personalized, targeted therapies, with some that could lead to specific metabolic changes, potentially monitored by imaging methods. In this paper we addressed the important aspects to study cancer metabolism by using image techniques, focusing on opportunities and challenges of magnetic resonance spectroscopy (MRS), dynamic nuclear polarization (DNP)-MRS, positron emission tomography (PET), and mass spectrometry imaging (MSI) for mapping cancer metabolism. Finally, we highlighted the future possibilities of an integrated in vivo PET/MR imaging systems, together with an in situ MSI tissue analytical platform, may become the ultimate technologies for unraveling and understanding the molecular complexities in some aspects of cancer metabolism. Such comprehensive imaging investigations might provide information on pharmacometabolomics, biomarker discovery, and disease diagnosis, prognosis, and treatment response monitoring for clinical medicine.
Collapse
Affiliation(s)
- Gigin Lin
- Department of Radiology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
- Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
- Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
| | - Yuen-Li Chung
- The Institute of Cancer Research and Royal Marsden Hospital, CRUK Cancer Imaging Centre, Downs Road, Sutton, Surrey SM2 5PT, UK
| |
Collapse
|
9
|
Bravatà V, Stefano A, Cammarata FP, Minafra L, Russo G, Nicolosi S, Pulizzi S, Gelfi C, Gilardi MC, Messa C. Genotyping analysis and ¹⁸FDG uptake in breast cancer patients: a preliminary research. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:23. [PMID: 23631762 PMCID: PMC3646684 DOI: 10.1186/1756-9966-32-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/19/2013] [Indexed: 12/22/2022]
Abstract
Background Diagnostic imaging plays a relevant role in the care of patients with breast cancer (BC). Positron Emission Tomography (PET) with 18F-fluoro-2-deoxy-D-glucose (FDG) has been widely proven to be a clinical tool suitable for BC detection and staging in which the glucose analog supplies metabolic information about the tumor. A limited number of studies, sometimes controversial, describe possible associations between FDG uptake and single nucleotide polymorphisms (SNPs). For this reason this field has to be explored and clarified. We investigated the association of SNPs in GLUT1, HIF-1a, EPAS1, APEX1, VEGFA and MTHFR genes with the FDG uptake in BC. Methods In 26 caucasian individuals with primary BC, whole-body PET-CT scans were obtained and quantitative analysis was performed by calculating the maximum Standardized Uptake Value normalized to body-weight (SUVmax) and the mean SUV normalized to body-weight corrected for partial volume effect (SUVpvc). Human Gene Mutation Database and dbSNP Short Genetic Variations database were used to analyze gene regions containing the selected SNPs. Patient genotypes were obtained using Sanger DNA sequencing analysis performed by Capillary Electrophoresis. Results BC patients were genotyped for the following nine SNPs: GLUT1: rs841853 and rs710218; HIF-1a: rs11549465 and rs11549467; EPAS1: rs137853037 and rs137853036; APEX1: rs1130409; VEGFA: rs3025039 and MTHFR: rs1801133. In this work correlations between the nine potentially useful polymorphisms selected and previously suggested with tracer uptake (using both SUVmax and SUVpvc) were not found. Conclusions The possible functional influence of specific SNPs on FDG uptake needs further studies in human cancer. In summary, this is the first pilot study, to our knowledge, which investigates the association between a large panel of SNPs and FDG uptake specifically in BC patients. This work represents a multidisciplinary and translational medicine approach to study BC where, the possible correlation between SNPs and tracer uptake, may be considered to improve personalized cancer treatment and care.
Collapse
|
10
|
|
11
|
Bernsen MR, Ruggiero A, van Straten M, Kotek G, Haeck JC, Wielopolski PA, Krestin GP. Computed tomography and magnetic resonance imaging. Recent Results Cancer Res 2013. [PMID: 23179877 DOI: 10.1007/978-3-642-10853-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.
Collapse
Affiliation(s)
- Monique R Bernsen
- Department of Radiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Powers AD, Palecek SP. Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. JOURNAL OF HEALTHCARE ENGINEERING 2012; 3:503-534. [PMID: 25147725 DOI: 10.1260/2040-2295.3.4.503] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer treatment is often hindered by inadequate methods for diagnosing the disease or insufficient predictive capacity regarding therapeutic efficacy. Targeted cancer treatments, including Bcr-Abl and EGFR kinase inhibitors, have increased survival for some cancer patients but are ineffective in other patients. In addition, many patients who initially respond to targeted inhibitor therapy develop resistance during the course of treatment. Molecular analysis of cancer cells has emerged as a means to tailor treatment to particular patients. While DNA analysis can provide important diagnostic information, protein analysis is particularly valuable because proteins are more direct mediators of normal and diseased cellular processes. In this review article, we discuss current and emerging protein assays for improving cancer treatment, including trends toward assay miniaturization and measurement of protein activity.
Collapse
Affiliation(s)
- Alicia D Powers
- Department of Chemical and Biological Engineering University of Wisconsin-Madison
| | - Sean P Palecek
- Department of Chemical and Biological Engineering University of Wisconsin-Madison
| |
Collapse
|
13
|
Sebire NJ, Taylor AM. Less invasive perinatal autopsies and the future of postmortem science. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2012; 39:609-611. [PMID: 22641584 DOI: 10.1002/uog.11181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- N J Sebire
- Department of Paediatric Pathology, Camelia Botnar Laboratories, Great Ormond Street Hospital, London, UK.
| | | |
Collapse
|
14
|
Ardenkjaer-Larsen JH, Leach AM, Clarke N, Urbahn J, Anderson D, Skloss TW. Dynamic nuclear polarization polarizer for sterile use intent. NMR IN BIOMEDICINE 2011; 24:927-932. [PMID: 21416540 DOI: 10.1002/nbm.1682] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/30/2010] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
A novel polarizer based on the dissolution-dynamic nuclear polarization (DNP) method has been designed, built and tested. The polarizer differs from those previously described by being designed with sterile use intent and being compatible with clinical use. The main features are: (1) an integral, disposable fluid path containing all pharmaceuticals constituting a sterile barrier, (2) a closed-cycle cryogenic system designed to eliminate consumption of liquid cryogens and (3) multi-sample polarization to increase throughput. The fluid path consists of a vial with the agent to be polarized, a pair of concentric inlet and outlet tubes connected to a syringe with dissolution medium and a receiver, respectively. The fluid path can operate at up to 400 K and 2.0 MPa and generates volumes as high as 100 mL. An inline filter removes the amount of electron paramagnetic agent in the final product by more than 100-fold in the case of [1-(13)C]pyruvate. The system uses a sorption pump in conjunction with a conventional cryocooler. The system operates through cycles of pumping to low temperature and regeneration of the sorption pump. The magnet accommodates four samples at the same time. A temperature of less than 1 K was achieved for 68 h (no sample heat loads) with a liquid helium volume of 2.4 L. The regeneration of the liquid helium could be achieved in less than 10 h, and the transition to cold (< 1.2 K) was achieved in less than 90 min. A solid state polarization of 36 ± 4% for [1-(13)C]pyruvic acid was obtained with only 10 mW of microwave power. The loading of a sample adds less than 50 J of heat to the helium bath by introducing the sample over 15 min. The heat load imposed on the helium bath during dissolution was less than 70 J. The measured liquid state polarization was 18 ± 2%.
Collapse
|
15
|
Fu Y, Létourneau M, Chatenet D, Dupuis J, Fournier A. Characterization of iodinated adrenomedullin derivatives suitable for lung nuclear medicine. Nucl Med Biol 2011; 38:867-74. [PMID: 21843783 DOI: 10.1016/j.nucmedbio.2011.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/14/2011] [Accepted: 01/29/2011] [Indexed: 02/02/2023]
Abstract
INTRODUCTION We have recently demonstrated the effectiveness of 99m-technetium adrenomedullin (AM) as a new molecular lung imaging agent that could provide significant advantages for the diagnosis and follow-up of disorders affecting the pulmonary circulation such as pulmonary embolism and pulmonary hypertension. Having the possibility to conjugate the targeting molecule with different radionuclides would offer more flexibility and potential advantages depending on clinical situations. Since various iodine isotopes are currently used in nuclear medicine and in pharmacological studies, we have evaluated which iodination method should be privileged in order to produce a good iodinated AM-derived nuclear medicine agent. METHODS Synthetic AM was labeled with iodine through chemical and lactoperoxidase oxidation methods. Position of the iodine atom on the peptide was determined by MALDI-TOF mass spectrometry analysis following cyanogen bromide cleavage and carboxypeptidase Y digestion. Binding affinity of iodinated AM analogues was evaluated by competition and saturation binding experiments on dog lung preparations. RESULTS In this study, we demonstrated that, upon lactoperoxidase oxidation, iodination occurred at Tyr(1) and that this radioligand retained higher binding affinity and specificity over preparations obtained through chemical oxidation. CONCLUSIONS These results emphasize the fact that even a small chemical modification, i.e. iodination, might deeply modify the pharmacological profile of a compound and support observations that the C-terminal tail of human AM plays an important role in the AM receptor binding process. Consequently, incorporation of a radionuclide to produce an AM-based nuclear medicine agent should privilege the N-terminus of the molecule.
Collapse
Affiliation(s)
- Yan Fu
- Laboratoire d'Études Moléculaires et Pharmacologiques des Peptides, INRS-Institut Armand-Frappier, Ville de Laval, Qc, Canada
| | | | | | | | | |
Collapse
|
16
|
Witney TH, Kettunen MI, Brindle KM. Kinetic modeling of hyperpolarized 13C label exchange between pyruvate and lactate in tumor cells. J Biol Chem 2011; 286:24572-80. [PMID: 21596745 DOI: 10.1074/jbc.m111.237727] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Measurements of the kinetics of hyperpolarized (13)C label exchange between [1-(13)C]pyruvate and lactate in suspensions of intact and lysed murine lymphoma cells, and in cells in which lactate dehydrogenase expression had been modulated by inhibition of the PI3K pathway, were used to determine quantitatively the role of enzyme activity and membrane transport in controlling isotope flux. Both steps were shown to share in the control of isotope flux in these cells. The kinetics of label exchange were well described by a kinetic model that employed rate constants for the lactate dehydrogenase reaction that had been determined previously from steady state kinetic studies. The enzyme showed pyruvate inhibition in steady state kinetic measurements, which the kinetic model predicted should also be observed in the isotope exchange measurements. However, no such pyruvate inhibition was observed in either intact cells or cell lysates and this could be explained by the much higher enzyme concentrations present in the isotope exchange experiments. The kinetic analysis presented here shows how lactate dehydrogenase activity can be determined from the isotope exchange measurements. The kinetic model should be useful for modeling the exchange reaction in vivo, particularly as this technique progresses to the clinic.
Collapse
Affiliation(s)
- Timothy H Witney
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
17
|
Tissue proteomics of the human mammary gland: towards an abridged definition of the molecular phenotypes underlying epithelial normalcy. Mol Oncol 2010; 4:539-61. [PMID: 21036680 DOI: 10.1016/j.molonc.2010.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 01/23/2023] Open
Abstract
Our limited understanding of the biological impact of the whole spectrum of early breast lesions together with a lack of accurate molecular-based risk criteria for the diagnosis and assignment of prognostic significance to biopsy findings presents an important problem in the clinical management of patients harboring precancerous breast lesions. As a result, there is a need to identify biomarkers that can better determine the outcome of early breast lesions by identifying subpopulations of cells in breast premalignant disease that are at high-risk of progression to invasive disease. A first step towards achieving this goal will be to define the molecular phenotypes of the various cell types and precursors - generated by the stem cell hierarchy - that are present in normal and benign conditions of the breast. To date there have been very few systematic proteomic studies aimed at characterizing the phenotypes of the different cell subpopulations present in normal human mammary tissue, partly due to the formidable heterogeneity of mammary tissue, but also due to limitations of the current proteomic technologies. Work in our laboratories has attempted to address in a systematic fashion some of these limitations and here we present our efforts to search for biomarkers using normal fresh tissue from non-neoplastic breast samples. From the data generated by the 2D gel-based proteomic profiling we were able to compile a protein database of normal human breast epithelial tissue that was used to support the biomarker discovery program. We review and present new data on the putative cell-progenitor marker cytokeratin 15 (CK15), and describe a novel marker, dihydropyriminidase-related protein 3 (DRP3) that in combination with CK15 and other well known proteins were used to define molecular phenotypes of normal human breast epithelial cells and their progenitors in resting acini, lactating alveoli, and large collecting ducts of the nipple. Preliminary results are also presented concerning DRP3 positive usual ductal hyperplasias (UDHs) and on single cell layer columnar cells (CCCs). At least two bona fide biomarkers of undifferentiated ERα/PgR negative luminal cells emerged from these studies, CK15 and c-KIT, which in combination with transformation markers may lead to the establishment of a protein signature able to identify breast precancerous at risk of progressing to invasive disease.
Collapse
|