1
|
Li QK, Hu Y, Chen L, Schnaubelt M, Cui Zhou D, Li Y, Lu RJH, Thiagarajan M, Hostetter G, Newton CJ, Jewell SD, Omenn G, Robles AI, Mesri M, Bathe OF, Zhang B, Ding L, Hruban RH, Chan DW, Zhang H. Neoplastic cell enrichment of tumor tissues using coring and laser microdissection for proteomic and genomic analyses of pancreatic ductal adenocarcinoma. Clin Proteomics 2022; 19:36. [PMID: 36266629 DOI: 10.1186/s12014-022-09373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The identification of differentially expressed tumor-associated proteins and genomic alterations driving neoplasia is critical in the development of clinical assays to detect cancers and forms the foundation for understanding cancer biology. One of the challenges in the analysis of pancreatic ductal adenocarcinoma (PDAC) is the low neoplastic cellularity and heterogeneous composition of bulk tumors. To enrich neoplastic cells from bulk tumor tissue, coring, and laser microdissection (LMD) sampling techniques have been employed. In this study, we assessed the protein and KRAS mutation changes associated with samples obtained by these enrichment techniques and evaluated the fraction of neoplastic cells in PDAC for proteomic and genomic analyses. METHODS Three fresh frozen PDAC tumors and their tumor-matched normal adjacent tissues (NATs) were obtained from three sampling techniques using bulk, coring, and LMD; and analyzed by TMT-based quantitative proteomics. The protein profiles and characterizations of differentially expressed proteins in three sampling groups were determined. These three PDACs and samples of five additional PDACs obtained by the same three sampling techniques were also subjected to genomic analysis to characterize KRAS mutations. RESULTS The neoplastic cellularity of eight PDACs ranged from less than 10% to over 80% based on morphological review. Distinctive proteomic patterns and abundances of certain tumor-associated proteins were revealed when comparing the tumors and NATs by different sampling techniques. Coring and bulk tissues had comparable proteome profiles, while LMD samples had the most distinct proteome composition compared to bulk tissues. Further genomic analysis of bulk, cored, or LMD samples demonstrated that KRAS mutations were significantly enriched in LMD samples while coring was less effective in enriching for KRAS mutations when bulk tissues contained a relatively low neoplastic cellularity. CONCLUSIONS In addition to bulk tissues, samples from LMD and coring techniques can be used for proteogenomic studies. The greatest enrichment of neoplastic cellularity is obtained with the LMD technique.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA. .,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, USA.
| | - Yingwei Hu
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA
| | - Lijun Chen
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA
| | - Daniel Cui Zhou
- Department of Oncology, Washington University at Saint Louis, St Louis, MO, USA
| | - Yize Li
- Department of Oncology, Washington University at Saint Louis, St Louis, MO, USA
| | - Rita Jui-Hsien Lu
- Department of Oncology, Washington University at Saint Louis, St Louis, MO, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | - Gil Omenn
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD, USA
| | - Oliver F Bathe
- Department of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Li Ding
- Department of Oncology, Washington University at Saint Louis, St Louis, MO, USA
| | - Ralph H Hruban
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA.,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, USA
| | - Daniel W Chan
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA.,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA. .,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, USA.
| |
Collapse
|
2
|
Hyun S, Park D. Challenges in genomic analysis of model systems and primary tumors of pancreatic ductal adenocarcinoma. Comput Struct Biotechnol J 2022; 20:4806-4815. [PMID: 36147673 PMCID: PMC9464644 DOI: 10.1016/j.csbj.2022.08.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive tumor behavior and poor prognosis. Recent next-generation sequencing (NGS)-based genomic studies have provided novel treatment modes for pancreatic cancer via the identification of cancer driver variants and molecular subtypes in PDAC. Genome-wide approaches have been extended to model systems such as patient-derived xenografts (PDXs), organoids, and cell lines for pre-clinical purposes. However, the genomic characteristics vary in the model systems, which is mainly attributed to the clonal evolution of cancer cells during their construction and culture. Moreover, fundamental limitations such as low tumor cellularity and the complex tumor microenvironment of PDAC hinder the confirmation of genomic features in the primary tumor and model systems. The occurrence of these phenomena and their associated complexities may lead to false insights into the understanding of mechanisms and dynamics in tumor tissues of patients. In this review, we describe various model systems and discuss differences in the results based on genomics and transcriptomics between primary tumors and model systems. Finally, we introduce practical strategies to improve the accuracy of genomic analysis of primary tissues and model systems.
Collapse
|
3
|
Zhou T, Wang J. Laser Capture Microdissection of Vascular Endothelial Cells from Frozen Heart Tissues. Methods Mol Biol 2021; 2319:105-110. [PMID: 34331248 DOI: 10.1007/978-1-0716-1480-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Laser capture microdissection (LCM) enables researchers to selectively evaluate gene expression profiling of a specific cell type within a tissue. Vascular endothelial cells (EC) line the inside of vessel lumen and play an essential role in new blood vessel formation. It remains a challenge to determine vascular ECs-specific genes expression in vivo. Here, we described a method to dissect vascular ECs from the frozen heart tissue by LCM. The total RNA or proteins are then extracted from the ECs for further analysis.
Collapse
Affiliation(s)
- Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA.
| | - Jian Wang
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| |
Collapse
|
4
|
Randazzo O, Papini F, Mantini G, Gregori A, Parrino B, Liu DSK, Cascioferro S, Carbone D, Peters GJ, Frampton AE, Garajova I, Giovannetti E. "Open Sesame?": Biomarker Status of the Human Equilibrative Nucleoside Transporter-1 and Molecular Mechanisms Influencing its Expression and Activity in the Uptake and Cytotoxicity of Gemcitabine in Pancreatic Cancer. Cancers (Basel) 2020; 12:3206. [PMID: 33142664 PMCID: PMC7692081 DOI: 10.3390/cancers12113206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive tumor characterized by early invasiveness, rapid progression and resistance to treatment. For more than twenty years, gemcitabine has been the main therapy for PDAC both in the palliative and adjuvant setting. After the introduction of FOLFIRINOX as an upfront treatment for metastatic disease, gemcitabine is still commonly used in combination with nab-paclitaxel as an alternative first-line regimen, as well as a monotherapy in elderly patients unfit for combination chemotherapy. As a hydrophilic nucleoside analogue, gemcitabine requires nucleoside transporters to permeate the plasma membrane, and a major role in the uptake of this drug is played by human equilibrative nucleoside transporter 1 (hENT-1). Several studies have proposed hENT-1 as a biomarker for gemcitabine efficacy in PDAC. A recent comprehensive multimodal analysis of hENT-1 status evaluated its predictive role by both immunohistochemistry (with five different antibodies), and quantitative-PCR, supporting the use of the 10D7G2 antibody. High hENT-1 levels observed with this antibody were associated with prolonged disease-free status and overall-survival in patients receiving gemcitabine adjuvant chemotherapy. This commentary aims to critically discuss this analysis and lists molecular factors influencing hENT-1 expression. Improved knowledge on these factors should help the identification of subgroups of patients who may benefit from specific therapies and overcome the limitations of traditional biomarker studies.
Collapse
Affiliation(s)
- Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Filippo Papini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| | - Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
- Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford GU2 7XH, UK
| | - Ingrid Garajova
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
5
|
Le Large TY, Mantini G, Meijer LL, Pham TV, Funel N, van Grieken NC, Kok B, Knol J, van Laarhoven HW, Piersma SR, Jimenez CR, Kazemier G, Giovannetti E, Bijlsma MF. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 2020; 5:e138290. [PMID: 32634123 PMCID: PMC7455080 DOI: 10.1172/jci.insight.138290] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a relative paucity of cancer cells that are surrounded by an abundance of nontumor cells and extracellular matrix, known as stroma. The interaction between stroma and cancer cells contributes to poor outcome, but how proteins from these individual compartments drive aggressive tumor behavior is not known. Here, we report the proteomic analysis of laser-capture microdissected (LCM) PDAC samples. We isolated stroma, tumor, and bulk samples from a cohort with long- and short-term survivors. Compartment-specific proteins were measured by mass spectrometry, yielding what we believe to be the largest PDAC proteome landscape to date. These analyses revealed that, in bulk analysis, tumor-derived proteins were typically masked and that LCM was required to reveal biology and prognostic markers. We validated tumor CALB2 and stromal COL11A1 expression as compartment-specific prognostic markers. We identified and functionally addressed the contributions of the tumor cell receptor EPHA2 to tumor cell viability and motility, underscoring the value of compartment-specific protein analysis in PDAC.
Collapse
Affiliation(s)
- Tessa Y.S. Le Large
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Laura L. Meijer
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | - Jaco Knol
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
6
|
Zhou JZ, Hu MR, Diao HL, Wang QW, Huang Q, Ge BJ. Comprehensive analysis of differentially expressed circRNAs revealed a ceRNA network in pancreatic ductaladenocarcinoma. Arch Med Sci 2019; 15:979-991. [PMID: 31360192 PMCID: PMC6657245 DOI: 10.5114/aoms.2019.85204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. However, the molecular mechanisms underlying PDAC are still not completely understood. Circular RNAs (circRNAs) are a unique class of RNA formed by special loop splicing. More and more researchers have paid attention to circRNAs. MATERIAL AND METHODS In this study, we constructed a circRNA-mediated competing endogenous RNA (ceRNA) network in PDAC. Gene ontology (GO) analysis was performed to explore circRNAs' potential roles in PDAC progression. We also constructed an up-stream transcriptional network of circRNAs' parental genes and found that many transcription factors (TFs), such as tumor protein p53 (TP53) and MYC, could regulate their expression. RESULTS This study, which aimed to identify differentially expressed circRNAs in PDAC, suggested that circRNAs may also act as biomarkers for PDAC. We analyzed two public datasets (GSE69362 and GSE79634) to identify differentially expressed circRNAs in PDAC. Finally, we found that DExH-Box Helicase 9 (DHX9) may be a potential regulator of circRNA formation in PDAC. Genomic loci of four down-regulated circRNAs - hsa_circ_000691, hsa_circ_0049392, hsa_circ_0005203, and hsa_circ_0001626 - contained DHX9 binding sites, suggesting that they may be directly regulated by DHX9. CONCLUSIONS Our study identified differentially expressed circRNAs in PDAC, suggesting that circRNAs may also act as biomarkers for PDAC. Additional investigations of function and up-stream regulation of differentially expressed circRNA in PDAC are still needed.
Collapse
Affiliation(s)
- Jin-Zhe Zhou
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mu-Ren Hu
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Liang Diao
- Department of General Surgery, Karamay Central Hospital, Karamay, Xinjiang, China
| | - Qi-Wei Wang
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Huang
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bu-Jun Ge
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Ottaviani S, Stebbing J, Frampton AE, Zagorac S, Krell J, de Giorgio A, Trabulo SM, Nguyen VTM, Magnani L, Feng H, Giovannetti E, Funel N, Gress TM, Jiao LR, Lombardo Y, Lemoine NR, Heeschen C, Castellano L. TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat Commun 2018; 9:1845. [PMID: 29748571 PMCID: PMC5945639 DOI: 10.1038/s41467-018-03962-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
TGF-β/Activin induces epithelial-to-mesenchymal transition and stemness in pancreatic ductal adenocarcinoma (PDAC). However, the microRNAs (miRNAs) regulated during this response have remained yet undetermined. Here, we show that TGF-β transcriptionally induces MIR100HG lncRNA, containing miR-100, miR-125b and let-7a in its intron, via SMAD2/3. Interestingly, we find that although the pro-tumourigenic miR-100 and miR-125b accordingly increase, the amount of anti-tumourigenic let-7a is unchanged, as TGF-β also induces LIN28B inhibiting its maturation. Notably, we demonstrate that inactivation of miR-125b or miR-100 affects the TGF-β-mediated response indicating that these miRNAs are important TGF-β effectors. We integrate AGO2-RIP-seq with RNA-seq to identify the global regulation exerted by these miRNAs in PDAC cells. Transcripts targeted by miR-125b and miR-100 significantly overlap and mainly inhibit p53 and cell-cell junctions' pathways. Together, we uncover that TGF-β induces an lncRNA, whose encoded miRNAs, miR-100, let-7a and miR-125b play opposing roles in controlling PDAC tumourigenesis.
Collapse
Affiliation(s)
- Silvia Ottaviani
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Adam E Frampton
- Department of Surgery and Cancer, HPB Surgical Unit, Imperial College, Hammersmith Hospital Campus, London, W12 0HS, UK
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), London, W12 0NN, UK
| | - Sladjana Zagorac
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Jonathan Krell
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), London, W12 0NN, UK
| | - Alexander de Giorgio
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Sara M Trabulo
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28028, Spain
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Van T M Nguyen
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Luca Magnani
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Hugang Feng
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, 56126, Italy
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, 56126, Italy
| | - Thomas M Gress
- Clinic for Gastroenterology, Endocrinology, Metabolism and Infectiology, Philipps-University Marburg, Marburg, 35037, Germany
| | - Long R Jiao
- Department of Surgery and Cancer, HPB Surgical Unit, Imperial College, Hammersmith Hospital Campus, London, W12 0HS, UK
| | - Ylenia Lombardo
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Christopher Heeschen
- Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28028, Spain
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, W12 0NN, UK.
- University of Sussex, School of life Sciences, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
8
|
Le Large TYS, Mato Prado M, Krell J, Bijlsma MF, Meijer LL, Kazemier G, Frampton AE, Giovannetti E. Bioinformatic analysis reveals pancreatic cancer molecular subtypes specific to the tumor and the microenvironment. Expert Rev Mol Diagn 2016; 16:733-736. [PMID: 27118062 DOI: 10.1080/14737159.2016.1175940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by a dense desmoplastic reaction surrounding malignant epithelial cells. Interaction between the epithelial and stromal compartments is suggested to enhance its aggressive nature. Indeed, therapies targeting the stroma, as well as the tumor cells, may improve survival outcomes for patients. The evaluated study by Moffitt et al. used bioinformatic techniques to separate gene expression patterns of normal tissues from PDAC and stroma in a large cohort of samples. The researchers identified two different subtypes of PDAC ('classical' and 'basal-like') and surrounding stroma ('normal' and 'activated'). The basal-like subtype was associated with worse prognosis and a trend towards better response to adjuvant therapy. Hopefully, the molecular stratification of PDAC will potentially allow more personalized treatment strategies and guide clinical decision making.
Collapse
Affiliation(s)
- Tessa Y S Le Large
- a Department of Surgery , VU University Medical Center , Amsterdam , The Netherlands
- b Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
- c Department of Medical Oncology , Academic Medical Center , Amsterdam , The Netherlands
| | - Mireia Mato Prado
- d Division of Cancer, Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM) , Imperial College , London , UK
| | - Jonathan Krell
- d Division of Cancer, Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM) , Imperial College , London , UK
| | - Maarten F Bijlsma
- c Department of Medical Oncology , Academic Medical Center , Amsterdam , The Netherlands
| | - Laura L Meijer
- a Department of Surgery , VU University Medical Center , Amsterdam , The Netherlands
| | - Geert Kazemier
- a Department of Surgery , VU University Medical Center , Amsterdam , The Netherlands
| | - Adam E Frampton
- d Division of Cancer, Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM) , Imperial College , London , UK
- e HPB Surgical Unit, Department of Surgery & Cancer , Imperial College , London , UK
| | - Elisa Giovannetti
- b Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
- f Cancer Pharmacology Lab, AIRC Start-Up Unit , University of Pisa , Pisa , Italy
- g CNR-Nano , Institute of Nanoscience and Nanotechnology , Pisa , Italy
| |
Collapse
|
9
|
Lee KH, Lee JK, Choi DW, Do IG, Sohn I, Jang KT, Jung SH, Heo JS, Choi SH, Lee KT. Postoperative prognosis prediction of pancreatic cancer with seven microRNAs. Pancreas 2015; 44:764-768. [PMID: 25906450 DOI: 10.1097/mpa.0000000000000346] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The aim of this study was to investigate microRNAs related to postoperative prognosis of pancreatic cancer by applying microarray analysis to stored surgical specimens. METHODS We retrospectively analyzed the relationship between microRNA expression and postoperative survival of pancreatic cancer patients in Samsung Medical Center. After the correlation of microRNA expression between paraffin-embedded and fresh-frozen specimens was confirmed, we applied NanoString nCounter system to formalin fixed paraffin-embedded surgical specimens between 1995 September and 2010 June. RESULTS Paired fresh and paraffin-embedded samples from 9 patients showed a high correlation (correlation coefficient > 0.91). Among 734 microRNAs, 7 microRNAs were found to be related to postoperative overall survival of 221 pancreatic cancer patients: hsa-miR-99a, hsa-miR-150, hsa-miR-194, hsa-miR-375, hsa-miR-664, hsa-miR-342-3p, and hsa-miR-487b (P < 0.01). The prognostic microRNA signature was consistent after adjustment of clinical parameters: resection status, stages, age, sex, adjuvant treatment, pathological differentiation and postoperative carbohydrate antigen 19-9 levels. CONCLUSIONS We found a prediction model for postoperative prognosis of pancreatic cancer using 7 microRNA expression patterns from archived formalin-fixed paraffin-embedded surgical specimens. The methods for microRNA detection and new microRNAs detected in this study provide new insights for new research of surgically resected pancreatic cancer samples and microRNAs.
Collapse
Affiliation(s)
- Kwang Hyuck Lee
- From the *Department of Medicine, †Department of Surgery, ‡Department of Pathology, §Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; and ∥Department of Biostatistics and Bioinformatics, Duke University, NC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jordheim LP, Dumontet C. Do hENT1 and RRM1 predict the clinical benefit of gemcitabine in pancreatic cancer? Biomark Med 2014; 7:663-71. [PMID: 23905902 DOI: 10.2217/bmm.13.48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gemcitabine is a nucleoside analog that is indicated in the treatment of pancreatic cancer. In order to provide a better use of this drug, the search for immunohistological markers is a hot topic in the field of pancreatic cancer. In particular, the use of nucleoside transporter hENT1 and the intracellular target of gemcitabine RRM1 are current subjects for discussion. We have analyzed the majority of studies of hENT1 and RRM1 on pancreatic cancer, and will discuss the further directions that might be followed in order to integrate these proteins in routine clinical practice. The data that is currently available would benefit from the completion of well-designed randomized trials in order to confirm the clinical value of hENT1 and RRM1 as biomarkers in pancreatic cancer patients.
Collapse
|
11
|
Hinton J, Callan R, Bodine C, Glasgow W, Brower S, Jiang SW, Li J. Potential epigenetic biomarkers for the diagnosis and prognosis of pancreatic ductal adenocarcinomas. Expert Rev Mol Diagn 2014; 13:431-43. [DOI: 10.1586/erm.13.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Frampton AE, Castellano L, Colombo T, Giovannetti E, Krell J, Jacob J, Pellegrino L, Roca-Alonso L, Funel N, Gall TMH, De Giorgio A, Pinho FG, Fulci V, Britton DJ, Ahmad R, Habib NA, Coombes RC, Harding V, Knösel T, Stebbing J, Jiao LR. MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 2014; 146:268-77.e18. [PMID: 24120476 DOI: 10.1053/j.gastro.2013.10.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 09/05/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS There has not been a broad analysis of the combined effects of altered activities of microRNAs (miRNAs) in pancreatic ductal adenocarcinoma (PDAC) cells, and it is unclear how these might affect tumor progression or patient outcomes. METHODS We combined data from miRNA and messenger RNA (mRNA) expression profiles and bioinformatic analyses to identify an miRNA-mRNA regulatory network in PDAC cell lines (PANC-1 and MIA PaCa-2) and in PDAC samples from patients. We used this information to identify miRNAs that contribute most to tumorigenesis. RESULTS We identified 3 miRNAs (MIR21, MIR23A, and MIR27A) that acted as cooperative repressors of a network of tumor suppressor genes that included PDCD4, BTG2, and NEDD4L. Inhibition of MIR21, MIR23A, and MIR27A had synergistic effects in reducing proliferation of PDAC cells in culture and growth of xenograft tumors in mice. The level of inhibition was greater than that of inhibition of MIR21 alone. In 91 PDAC samples from patients, high levels of a combination of MIR21, MIR23A, and MIR27A were associated with shorter survival times after surgical resection. CONCLUSIONS In an integrated data analysis, we identified functional miRNA-mRNA interactions that contribute to growth of PDACs. These findings indicate that miRNAs act together to promote tumor progression; therapeutic strategies might require inhibition of several miRNAs.
Collapse
Affiliation(s)
- Adam E Frampton
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, London, UK
| | - Leandro Castellano
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK.
| | - Teresa Colombo
- Department of Cellular Biotechnology and Haematology, La Sapienza University, Rome, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jonathan Krell
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Jimmy Jacob
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Loredana Pellegrino
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Laura Roca-Alonso
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Niccola Funel
- Experimental and Molecular Oncology, Department of Surgery, University of Pisa, Pisa, Italy
| | - Tamara M H Gall
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, London, UK
| | - Alexander De Giorgio
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Filipa G Pinho
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Valerio Fulci
- Department of Cellular Biotechnology and Haematology, La Sapienza University, Rome, Italy
| | | | - Raida Ahmad
- Department of Pathology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Nagy A Habib
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, London, UK
| | - R Charles Coombes
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Victoria Harding
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Justin Stebbing
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Long R Jiao
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, London, UK.
| |
Collapse
|
13
|
Maftouh M, Avan A, Funel N, Frampton AE, Fiuji H, Pelliccioni S, Castellano L, Galla V, Peters GJ, Giovannetti E. miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2014; 33:384-393. [PMID: 24940696 DOI: 10.1080/15257770.2014.891741] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Only a subset of radically-resected pancreatic ductal adenocarcinoma (PDAC) patients benefit from gemcitabine-based chemotherapy, thus the identification of novel prognostic factors is essential. In a high-throughput, microRNA (miRNA) array, miR-211 emerged as the best discriminating miRNA, with high expression associated with long survival. Here, we further explored the biological role of miRNA-211 in gemcitabine activity in the human PDAC cells (SUIT-2) subclones SUIT2-007 and SUIT2-028. Our results showed that miR-211 was expressed differentially in PDAC cells characterized by differential metastatic capability. In particular, S2-028 with lower metastatic ability had a higher expression of miR-211, compared to the S2-007 with higher metastatic capacity. Enforced expression of miR-211 via pre-miR-211 significantly reduced cell migration and invasion (e.g., 40% reduction of invasion of SUIT2 cells, compared to control; p<.05). Moreover, we demonstrated that induction of the miR-211 expression in the cells increased the sensitivity to gemcitabine and reduced the expression of its target ribonucleotide reductase subunit 2 (RRM2). In conclusion, miR-211 functional analyses suggested the role of RRM2 as a target of miR-211 in the modulation of gemcitabine sensitivity. Moreover, inhibition of cell migration and invasion might explain the less aggressive behavior of pancreatic cancer cells with higher expression levels of miR-211.
Collapse
Affiliation(s)
- Mina Maftouh
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , Amsterdam , The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Caponi S, Funel N, Frampton AE, Mosca F, Santarpia L, Van der Velde AG, Jiao LR, De Lio N, Falcone A, Kazemier G, Meijer GA, Verheul HM, Vasile E, Peters GJ, Boggi U, Giovannetti E. The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann Oncol 2013; 24:734-741. [PMID: 23139258 DOI: 10.1093/annonc/mds513] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This multicenter study evaluated three candidate microRNAs (miRNAs) (miR-21, miR-155 and miR-101) as potential biomarkers in intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. PATIENTS AND METHODS miRNA expression was quantified by quantitative RT-PCR in 86 laser-microdissected specimens, including 65 invasive IPMNs, 16 non-invasive IPMNs and 5 normal pancreatic ductal tissues. Univariate and multivariate analyses compared miRNAs and clinical parameters with overall (OS) and disease-free survival (DFS). RESULTS miR-21 and miR-155 were up-regulated in invasive IPMNs compared with non-invasive IPMNs, as well as in non-invasive IPMNs compared with normal tissues. Conversely, miR-101 levels were significantly higher in non-invasive IPMNs and normal tissues compared with invasive IPMNs. High levels of miR-21 were associated with worse OS [hazard ratio (HR) = 2.47, 95% confidence interval (CI) = 1.37-5.65, P = 0.0047]. Patients with high-miR-21 expression also had a shorter median DFS (10.9 versus 29.9 months, P = 0.01). Multivariate analysis confirmed miR-21 as independently prognostic for mortality and disease progression (death risk: HR = 3.3, 95% CI = 1.5-7.0, P = 0.02; progression risk: HR = 2.3, 95% CI = 1.2-4.8, P = 0.02), as well as positive lymph-node status (death risk: HR = 2.6, 95% CI = 1.1-6.3, P = 0.03; progression risk: HR = 2.2, 95% CI = 1.0-4.8, P = 0.04). CONCLUSIONS miR-21, miR-155 and miR-101 showed significant differences in invasive versus non-invasive IPMNs. miR-21 emerged as an independent prognostic biomarker in invasive IPMNs and should be validated in prospective studies.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/mortality
- Adenocarcinoma, Mucinous/secondary
- Adenocarcinoma, Papillary/metabolism
- Adenocarcinoma, Papillary/mortality
- Adenocarcinoma, Papillary/secondary
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/secondary
- Disease-Free Survival
- Female
- Humans
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Multivariate Analysis
- Neoplasm Invasiveness
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Proportional Hazards Models
Collapse
Affiliation(s)
- S Caponi
- Unit Medical Oncology-2, Azienda Ospedaliero-Universitaria Pisana, Pisa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pan S, Brentnall TA, Kelly K, Chen R. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies, and challenges. Proteomics 2013; 13:710-21. [PMID: 23125171 DOI: 10.1002/pmic.201200319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances in proteomics technology, especially quantitative proteomics, have stimulated a great interest in applying this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic tumorigenesis, to improve therapeutic treatment and to identify cancer associated protein signatures, signaling events as well as interactions between cancer cells and tumor microenvironment. Here, we provide an overview on the tissue proteomics studies of pancreatic cancer reported in the past few years in light of discovery and technology development.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
16
|
Giovannetti E, van der Velde A, Funel N, Vasile E, Perrone V, Leon LG, De Lio N, Avan A, Caponi S, Pollina LE, Gallá V, Sudo H, Falcone A, Campani D, Boggi U, Peters GJ. High-throughput microRNA (miRNAs) arrays unravel the prognostic role of MiR-211 in pancreatic cancer. PLoS One 2012; 7:e49145. [PMID: 23155457 PMCID: PMC3498320 DOI: 10.1371/journal.pone.0049145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/04/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Only a subset of radically resected pancreatic ductal adenocarcinoma (PDAC) patients benefit from chemotherapy, and identification of prognostic factors is warranted. Recently miRNAs emerged as diagnostic biomarkers and innovative therapeutic targets, while high-throughput arrays are opening new opportunities to evaluate whether they can predict clinical outcome. The present study evaluated whether comprehensive miRNA expression profiling correlated with overall survival (OS) in resected PDAC patients. METHODOLOGY/PRINCIPAL FINDINGS High-resolution miRNA profiles were obtained with the Toray's 3D-Gene™-miRNA-chip, detecting more than 1200 human miRNAs. RNA was successfully isolated from paraffin-embedded primary tumors of 19 out of 26 stage-pT3N1 homogeneously treated patients (adjuvant gemcitabine 1000 mg/m(2)/day, days-1/8/15, every 28 days), carefully selected according to their outcome (OS<12 (N = 13) vs. OS>30 months (N = 6), i.e. short/long-OS). Highly stringent statistics included t-test, distance matrix with Spearman-ranked correlation, and iterative approaches. Unsupervised hierarchical analysis revealed that PDACs clustered according to their short/long-OS classification, while the feature selection algorithm RELIEF identified the top 4 discriminating miRNAs between the two groups. These miRNAs target more than 1500 transcripts, including 169 targeted by two or more. MiR-211 emerged as the best discriminating miRNA, with significantly higher expression in long- vs. short-OS patients. The expression of this miRNA was subsequently assessed by quantitative-PCR in an independent cohort of laser-microdissected PDACs from 60 resected patients treated with the same gemcitabine regimen. Patients with low miR-211 expression according to median value had a significantly shorter median OS (14.8, 95%CI = 13.1-16.5, vs. 25.7 months, 95%CI = 16.2-35.1, log-rank-P = 0.004). Multivariate analysis demonstrated that low miR-211 expression was an independent factor of poor prognosis (hazard ratio 2.3, P = 0.03) after adjusting for all the factors influencing outcome. CONCLUSIONS/SIGNIFICANCE Through comprehensive microarray analysis and PCR validation we identified miR-211 as a prognostic factor in resected PDAC. These results prompt further prospective studies and research on the biological role of miR-211 in PDAC.
Collapse
Affiliation(s)
- Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schnabel CA, Erlander MG. Gene expression-based diagnostics for molecular cancer classification of difficult to diagnose tumors. ACTA ACUST UNITED AC 2012; 6:407-19. [PMID: 23480806 DOI: 10.1517/17530059.2012.704363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Standardized methods for accurate tumor classification are of critical importance for cancer diagnosis and treatment, particularly in diagnostically-challenging cases where site-directed therapies are an option. Molecular diagnostics for tumor classification, subclassification and site of origin determination based on advances in gene expression profiling have translated into clinical practice as complementary approaches to clinicopathological evaluations. AREAS COVERED In this review, the foundational science of gene expression-based cancer classification, technical and clinical considerations for clinical translation, and an overview of molecular signatures of tumor classification that are available for clinical use will be discussed. Proposed approaches will also be described for further integration of molecular tests for cancer classification into the diagnostic paradigm using a tissue-based strategy as a key component to direct evaluation. EXPERT OPINION Increasing evidence of improved patient outcomes with the application of site and molecularly-targeted cancer therapy through use of molecular tools highlights the growing potential for these gene expression-based diagnostics to positively impact patient management. Looking forward, the availability of adequate tissue will be a significant issue and limiting factor as cancer diagnosis progresses; when the tumor specimen is limited, use of molecular classification may be a reasonable early step in the evaluation, particularly if the tumor is poorly-differentiated and has atypical features.
Collapse
|
18
|
Frampton AE, Krell J, Jacob J, Stebbing J, Castellano L, Jiao LR. Loss of miR-126 is crucial to pancreatic cancer progression. Expert Rev Anticancer Ther 2012; 12:881-4. [PMID: 22845403 DOI: 10.1586/era.12.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tumor-suppressor miRNA 126 (miR-126) is downregulated in many tumors and has recently been placed at the heart of complex metastatic pathways. Hamada and colleagues have identified miR-126 as being downregulated in pancreatic ductal adenocarcinoma (PDAC) patient samples and cell lines. The protein ADAM9 has been implicated in the progression of various solid tumors including PDAC. ADAM9 is overexpressed in PDAC and also a direct target of miR-126. The miR-126/ADAM9 axis was subsequently established to control migration and invasion in PDAC, as well as reversal of epithelial-to-mesenchymal transition. miR-126 is also known to target other crucial oncogenes in PDAC such as KRAS and CRK. Replacing miR-126 in PDAC patients may be a novel strategy for preventing progression and metastasis.
Collapse
Affiliation(s)
- Adam E Frampton
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Di Turi G, Riggio C, Vittorio O, Marconcini S, Briguglio F, Funel N, Campani D, Barone A, Raffa V, Covani U. Sub-micrometric liposomes as drug delivery systems in the treatment of periodontitis. Int J Immunopathol Pharmacol 2012; 25:657-670. [PMID: 23058016 DOI: 10.1177/039463201202500312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Periodontitis is a complex disease and bacterial infection is one of the most common factors involved in this disease. Current strategies for the local delivery of antibiotics do not allow a complete clearance of bacteria filling dentinal tubules and this limits their therapeutic efficacy. Therefore, there is a strong need for the development of new delivery strategies aimed at improving the efficacy of antibiotic therapy for periodontitis with special reference to their ability to penetrate into the tubules. The aim of the present study is to develop liposome-based delivery systems of sub-micron dimension, able to diffuse into the dentinal tubules. A further aim of the research is to develop a protocol for enhanced diffusion based on the use of magnetic liposomes and magnetic fields. Liposomes were produced by hydration of a pre-liposomal formulation. The vesicles were stabilised with PEG and their re-sizing was achieved by extrusion. Magnetite nanoparticles were synthesized inside the vesicles, i.e., the chemical reaction involving FeCl₂, FeCl₃ and NH₃ occurred within the core of the newly formed liposomes. Dynamic light scattering analysis was performed for size characterization. A mathematical model was implemented to predict the diffusion of the liposomes in dentinal tubules. Ex-vivo validation was performed on extracted human teeth. We produced PEG-ylated liposomes (average size 204.3 nm) and PEG-ylated magnetic liposomes (average size 286 nm) and an iron content of 4.2 μg/ml. Through mathematical modelling, we deduced that sub-micrometer vesicles are able to penetrate into dentinal tubules. This penetration is considerably more effective when the vesicles are magnetized and subjected to an external magnetic field which accelerates their movement within the tubules. The liposome-based delivery systems developed by the present study are able to penetrate deeply into the tubules, sometimes reaching their terminal ends.
Collapse
Affiliation(s)
- G Di Turi
- Department of Oncology, Transplantation and Advanced Technologies in Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee JH, Giovannetti E, Hwang JH, Petrini I, Wang Q, Voortman J, Wang Y, Steinberg SM, Funel N, Meltzer P, Wang Y, Giaccone G. Loss of 18q22.3 involving the carboxypeptidase of glutamate-like gene is associated with poor prognosis in resected pancreatic cancer. Clin Cancer Res 2012; 18:524-533. [PMID: 22128300 PMCID: PMC3261299 DOI: 10.1158/1078-0432.ccr-11-1903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSES Pancreatic cancer is the fourth leading cause of cancer-related death, and studies on the clinical relevance of its genomic imbalances are warranted. EXPERIMENTAL DESIGN Recurrent copy number alterations of cytobands and genes were analyzed by array comparative genomic hybridization (aCGH) in 44 resected pancreatic cancer specimens. Prognostic markers identified by aCGH were validated by PCR gene copy number assay in an independent validation cohort of 61 resected pancreatic cancers. The functions of gene identified were evaluated by proliferation, cell cycle, and migration assays in pancreatic cancer cells. RESULTS We showed recurrent copy number gains and losses in the first cohort. Loss of 18q22.3 was significantly associated with short-term overall survival in the first cohort (P = 0.019). This cytoband includes the carboxypeptidase of glutamate-like (CPGL) gene. CPGL gene deletion was associated with shorter overall survival in the validation cohort (P = 0.003). CPGL deletion and mutations of TP53 or Kras seem to be independent events. A Cox model analysis of the two cohorts combined showed that loss of 18q22.3/deletion of the CPGL gene was an independent poor prognostic factor for overall survival (HR = 2.72, P = 0.0007). Reconstitution of CPGL or its splicing variant CPGL-B into CPGL-negative pancreatic cancer cells attenuated cell growth, migration, and induced G(1) accumulation. CONCLUSION Loss of 18q22.3/deletion of the CPGL gene is a poor prognostic marker in resected pancreatic cancer, and functional studies suggest the CPGL gene as growth suppressor gene in pancreatic cancer.
Collapse
Affiliation(s)
- Jih-Hsiang Lee
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, USA
| | | | - Jin-Hyeok Hwang
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, USA
- Department of Internal Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Iacopo Petrini
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, USA
| | - Qiuyan Wang
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, USA
| | - Johannes Voortman
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, USA
- Department of Medical Oncology, VU University, the Netherlands
| | - Yonghong Wang
- Genetic Branch, National Cancer Institute, National Institutes of Health, USA
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, USA
| | | | - Paul Meltzer
- Genetic Branch, National Cancer Institute, National Institutes of Health, USA
| | - Yisong Wang
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, USA
| | - Giuseppe Giaccone
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, USA
| |
Collapse
|
21
|
Frampton AE, Krell J, Jacob J, Stebbing J, Jiao LR, Castellano L. microRNAs as markers of survival and chemoresistance in pancreatic ductal adenocarcinoma. Expert Rev Anticancer Ther 2011; 11:1837-42. [PMID: 22117151 DOI: 10.1586/era.11.184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
microRNAs (miRs) are a recently recognized class of noncoding short RNAs, 17-25 nucleotides in length, that play a role in post-transcriptional gene regulation by translational repression and/or mRNA degradation. Various miRs have been highlighted in pancreatic cancer development and metastasis, and as potential clinical diagnostic/prognostic biomarkers. Recently, studies have indicated that miRs are responsible for resistance to chemotherapeutic agents. The miR-10b has been identified as a 'metastamiR' in various tumor types, notably breast cancer, but data surrounding its relevance in pancreatic ductal adenocarcinoma has been sparse. The evaluated article presents data indicating that miR-10b is upregulated in pancreatic ductal adenocarcinoma and can be used as a diagnostic marker in endoscopic ultrasound-guided fine-needle aspiration biopsies of suspicious pancreatic lesions. In addition, miR-10b may be able to guide neoadjuvant gemcitabine-based chemoradiotherapy and predict metastatic-free survival and overall survival.
Collapse
Affiliation(s)
- Adam E Frampton
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital, Du Cane Road, London, UK.
| | | | | | | | | | | |
Collapse
|