1
|
Biswas I, Precilla S D, Kuduvalli SS, K B, R S, T S A. Ultrastructural and immunohistochemical insights on the anti-glioma effects of a dual-drug cocktail in an in vivo experimental model. J Chemother 2024; 36:593-606. [PMID: 38240036 DOI: 10.1080/1120009x.2024.2302741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 10/23/2024]
Abstract
Glioma coined as 'butterfly tumor' exhibits intense heterogeneity at the molecular and cellular levels. Although, Temozolomide exerted a long-ranging and prevailing therapeutic effect against glioma, albeit it has provided modest survival outcome. Fucoidan, (marine brown algal derivative) has demonstrated potent anti-tumor effects including glioma. Nevertheless, there is paucity of studies conducted on Fucoidan to enhance the anti-glioma efficacy of Temozolomide. The present study aimed to explore the plausible synergistic anti-glioma efficacy of Fucoidan in combination with Temozolomide in an in vivo experimental model. The dual-drug combination significantly inhibited tumor growth in in vivo and prolonged the survival rate when compared with the other treatment and tumor-control groups, via down-regulation of inflammatory cascade- IL-6/T LR4 and JAK/STAT3 as per the immunohistochemistry findings. Furthermore, the ultrastructural analysis indicated that the combinatorial treatment had restored the normal neuronal architecture of glioma-induced rats. Overall, the dual-drug cocktail might enhance the therapeutic outcome in glioma patients.
Collapse
Affiliation(s)
- Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Daisy Precilla S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Bhavani K
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Anitha T S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| |
Collapse
|
2
|
Gelatin methacrylate hydrogels culture model for glioblastoma cells enriches for mesenchymal-like state and models interactions with immune cells. Sci Rep 2021; 11:17727. [PMID: 34489494 PMCID: PMC8421368 DOI: 10.1038/s41598-021-97059-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns. One such 3D system is gelatin methacrylate (GelMA) hydrogels, and we aimed to understand the suitability of using this system to mimic treatment-resistant glioblastoma cells that reside in specific niches. We characterized the phenotype of patient-derived glioma cells cultured in GelMA hydrogels (3D-GMH) for their tumorigenic properties using invasion and chemoresponse assays. In addition, we used integrated single-cell and spatial transcriptome analysis to compare cells cultured in 3D-GMH to neoplastic cells in vivo. Finally, we assessed tumor-immune cell interactions with a macrophage infiltration assay and a cytokine array. We show that the 3D-GMH system enriches treatment-resistant mesenchymal cells that are not represented in neurosphere cultures. Cells cultured in 3D-GMH resemble a mesenchymal-like cellular phenotype found in perivascular and hypoxic regions and recruit macrophages by secreting cytokines, a hallmark of the mesenchymal phenotype. Our 3D-GMH model effectively mimics the phenotype of glioma cells that are found in the perivascular and hypoxic niches of the glioblastoma core in situ, in contrast to the neurosphere cultures that enrich cells of the infiltrative edge of the tumor. This contrast highlights the need for due diligence in selecting an appropriate model when designing a study's objectives.
Collapse
|
3
|
Scafidi J, Ritter J, Talbot BM, Edwards J, Chew LJ, Gallo V. Age-Dependent Cellular and Behavioral Deficits Induced by Molecularly Targeted Drugs Are Reversible. Cancer Res 2018; 78:2081-2095. [PMID: 29559476 DOI: 10.1158/0008-5472.can-17-2254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/12/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
Newly developed targeted anticancer drugs inhibit signaling pathways commonly altered in adult and pediatric cancers. However, as these pathways are also essential for normal brain development, concerns have emerged of neurologic sequelae resulting specifically from their application in pediatric cancers. The neural substrates and age dependency of these drug-induced effects in vivo are unknown, and their long-term behavioral consequences have not been characterized. This study defines the age-dependent cellular and behavioral effects of these drugs on normally developing brains and determines their reversibility with post-drug intervention. Mice at different postnatal ages received short courses of molecularly targeted drugs in regimens analagous to clinical treatment. Analysis of rapidly developing brain structures important for sensorimotor and cognitive function showed that, while adult administration was without effect, earlier neonatal administration of targeted therapies attenuated white matter oligodendroglia and hippocampal neuronal development more profoundly than later administration, leading to long-lasting behavioral deficits. This functional impairment was reversed by rehabilitation with physical and cognitive enrichment. Our findings demonstrate age-dependent, reversible effects of these drugs on brain development, which are important considerations as treatment options expand for pediatric cancers.Significance: Targeted therapeutics elicit age-dependent long-term consequences on the developing brain that can be ameliorated with environmental enrichment. Cancer Res; 78(8); 2081-95. ©2018 AACR.
Collapse
Affiliation(s)
- Joseph Scafidi
- Neurology, Children's National Health System, Washington, D.C. .,Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Jonathan Ritter
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Brooke M Talbot
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Jorge Edwards
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| |
Collapse
|
4
|
Premkumar DR, Jane EP, Thambireddy S, Sutera PA, Cavaleri JM, Pollack IF. Mitochondrial dysfunction RAD51, and Ku80 proteolysis promote apoptotic effects of Dinaciclib in Bcl-xL silenced cells. Mol Carcinog 2017; 57:469-482. [PMID: 29240261 DOI: 10.1002/mc.22771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023]
Abstract
In the present study, we investigated the effect of CDK inhibitors (ribociclib, palbociclib, seliciclib, AZD5438, and dinaciclib) on malignant human glioma cells for cell viability, apoptosis, oxidative stress, and mitochondrial function using various assays. None of the CDK inhibitors induced cell death at a clinically relevant concentration. However, low nanomolar concentrations of dinaciclib showed higher cytotoxic activity against Bcl-xL silenced cells in a time- and concentration-dependent manner. This effect was not seen with other CDK inhibitors. The apoptosis-inducing capability of dinaciclib in Bcl-xL silenced cells was evidenced by cell shrinkage, mitochondrial dysfunction, DNA damage, and increased phosphatidylserine externalization. Dinaciclib was found to disrupt mitochondrial membrane potential, resulting in the release of cytochrome c, AIF, and smac/DIABLO into the cytoplasm. This was accompanied by the downregulation of cyclin-D1, D3, and total Rb. Dinaciclib caused cell cycle arrest in a time- and concentration-dependent manner and with accumulation of cells in the sub-G1 phase. Our results also revealed that dinaciclib, but not ribociclib or palbociclib or seliciclib or AZD5438 induced intrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bax and Bak), resulting in the activation of caspases and cleavage of PARP. We also found an additional mechanism for the dinaciclib-induced augmentation of apoptosis due to abrogation RAD51-cyclin D1 interaction, specifically proteolysis of the DNA repair proteins RAD51 and Ku80. Our results suggest that successfully interfering with Bcl-xL function may restore sensitivity to dinaciclib and could hold the promise for an effective combination therapeutic strategy.
Collapse
Affiliation(s)
- Daniel R Premkumar
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania
| | - Esther P Jane
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Swetha Thambireddy
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Philip A Sutera
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathon M Cavaleri
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Pedron S, Polishetty H, Pritchard AM, Mahadik BP, Sarkaria JN, Harley BAC. Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS COMMUNICATIONS 2017; 7:442-449. [PMID: 29230350 PMCID: PMC5721678 DOI: 10.1557/mrc.2017.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While preclinical models such as orthotopic tumors generated in mice from patient-derived specimens are widely used to predict sensitivity or therapeutic interventions for cancer, such xenografts can be slow, require extensive infrastructure, and can make in situ assessment difficult. Such concerns are heightened in highly aggressive cancers, such as glioblastoma (GBM), that display genetic diversity and short mean survival. Biomimetic biomaterial technologies offer an approach to create ex vivo models that reflect biophysical features of the tumor microenvironment (TME). We describe a microfluidic templating approach to generate spatially graded hydrogels containing patient-derived GBM cells to explore drug efficacy and resistance mechanisms.
Collapse
Affiliation(s)
- S Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - H Polishetty
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - A M Pritchard
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - B P Mahadik
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - J N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - B A C Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Lab., 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Jane EP, Premkumar DR, Sutera PA, Cavaleri JM, Pollack IF. Survivin inhibitor YM155 induces mitochondrial dysfunction, autophagy, DNA damage and apoptosis in Bcl-xL silenced glioma cell lines. Mol Carcinog 2017; 56:1251-1265. [PMID: 27805285 PMCID: PMC6844150 DOI: 10.1002/mc.22587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023]
Abstract
Because the anti-apoptotic protein Bcl-xL is overexpressed in glioma, one might expect that inhibiting or silencing this gene would promote tumor cell killing. However, our studies have shown that this approach has limited independent activity, but may tip the balance in favor of apoptosis induction in response to other therapeutic interventions. To address this issue, we performed a pharmacological screen using a panel of signaling inhibitors and chemotherapeutic agents in Bcl-xL silenced cells. Although limited apoptosis induction was observed with a series of inhibitors for receptor tyrosine kinases, PKC inhibitors, Src family members, JAK/STAT, histone deacetylase, the PI3K/Akt/mTOR pathway, MAP kinase, CDK, heat shock proteins, proteasomal processing, and various conventional chemotherapeutic agents, we observed a dramatic potentiation of apoptosis in Bcl-xL silenced cells with the survivin inhibitor, YM155. Treatment with YM155 increased the release of cytochrome c, smac/DIABLO and apoptosis inducing-factor, and promoted loss of mitochondrial membrane potential, activation of Bax, recruitment of LC3-II to the autophagosomes and apoptosis in Bcl-xL silenced cells. We also found an additional mechanism for the augmentation of apoptosis due to abrogation of DNA double-strand break repair mediated by Rad51 repression and enhanced accumulation of γH2AX. In summary, our observations may provide a new insight into the link between Bcl-xL and survivin inhibition for the development of novel therapies for glioma. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Esther P. Jane
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel R. Premkumar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania,Correspondence to: Department of Neurosurgery, Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224
| | - Philip A. Sutera
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Ian F. Pollack
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania,Correspondence to: Department of Neurosurgery, Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224
| |
Collapse
|
7
|
Mechanistic interrogation of combination bevacizumab/dual PI3K/mTOR inhibitor response in glioblastoma implementing novel MR and PET imaging biomarkers. Eur J Nucl Med Mol Imaging 2016; 43:1673-83. [PMID: 26975402 DOI: 10.1007/s00259-016-3343-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Resistance to bevacizumab (BEV) in glioblastoma is believed to occur via activation of molecular networks including the mTOR/PI3K pathway. Using an MR/PET molecular imaging biomarker approach, we investigated the response to combining BEV with the mTOR/PI3K inhibitor BEZ235. METHODS Tumours were established by orthotopically implanting U87MG-luc2 cells in mice. Animals were treated with BEZ235 and/or BEV, and imaged using diffusion-weighted-MRI, T2-weighted and T2*-weighted before and after administration of superparamagnetic iron oxide contrast agent. Maps for changes in relaxation rates (ΔR2, ΔR2* and apparent diffusion coefficient) were calculated. Vessel size index and microvessel density index were derived. 3'-Deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) PET and O-(2-[(18)F]fluoroethyl)-L-tyrosine ([(18)F]FET) PET were further performed and tumour endothelium/proliferation markers assessed by immunohistochemistry. RESULTS Treatment with BEV resulted in a pronounced decrease in tumour volume (T2-weighted MRI). No additive effect on tumour volume was observed with the BEV/BEZ235 combination compared with BEV monotherapy. The Ki67 proliferation index and [(18)F]FLT uptake studies were used to support the observations. Using ΔR2* and ΔR2 values, respectively, the BEV/BEZ235 combination significantly reduced tumour microvessel volume in comparison to BEV alone. Decreased microvessel density index was further observed in animals treated with the combination, supported by von Willebrand factor (vWF) immunohistochemistry. [(18)F]FET uptake was decreased following treatment with BEV alone, but was not further reduced following treatment with the combination. vWF immunohistochemistry analysis showed that the mean tumour vessel size was increased in all cohorts. CONCLUSION Assessing MR imaging biomarker parameters together with [(18)F]FET and [(18)F]FLT PET provided information on mechanism of action of the drug combination and clues as to potential clinical responses. Following translation to clinical use, treatment with a BEV/BEZ235 combination could reduce peritumoral oedema obviating the requirement for steroids. The use of hypothesis-driven molecular imaging studies facilitates the preclinical evaluation of drug response. Studies of this kind may more accurately predict the clinical potential of the BEV/BEZ235 combination regimen as a novel therapeutic approach in oncology.
Collapse
|
8
|
Lobo MR, Kukino A, Tran H, Schabel MC, Springer CS, Gillespie GY, Grafe MR, Woltjer RL, Pike MM. Synergistic Antivascular and Antitumor Efficacy with Combined Cediranib and SC6889 in Intracranial Mouse Glioma. PLoS One 2015; 10:e0144488. [PMID: 26645398 PMCID: PMC4672903 DOI: 10.1371/journal.pone.0144488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022] Open
Abstract
Prognosis remains extremely poor for malignant glioma. Targeted therapeutic approaches, including single agent anti-angiogenic and proteasome inhibition strategies, have not resulted in sustained anti-glioma clinical efficacy. We tested the anti-glioma efficacy of the anti-angiogenic receptor tyrosine kinase inhibitor cediranib and the novel proteasome inhibitor SC68896, in combination and as single agents. To assess anti-angiogenic effects and evaluate efficacy we employed 4C8 intracranial mouse glioma and a dual-bolus perfusion MRI approach to measure Ktrans, relative cerebral blood flow and volume (rCBF, rCBV), and relative mean transit time (rMTT) in combination with anatomical MRI measurements of tumor growth. While single agent cediranib or SC68896 treatment did not alter tumor growth or survival, combined cediranib/SC68896 significantly delayed tumor growth and increased median survival by 2-fold, compared to untreated. This was accompanied by substantially increased tumor necrosis in the cediranib/SC68896 group (p<0.01), not observed with single agent treatments. Mean vessel density was significantly lower, and mean vessel lumen area was significantly higher, for the combined cediranib/SC68896 group versus untreated. Consistent with our previous findings, cediranib alone did not significantly alter mean tumor rCBF, rCBV, rMTT, or Ktrans. In contrast, SC68896 reduced rCBF in comparison to untreated, but without concomitant reductions in rCBV, rMTT, or Ktrans. Importantly, combined cediranib/SC68896 substantially reduced rCBF, rCBV. rMTT, and Ktrans. A novel analysis of Ktrans/rCBV suggests that changes in Ktrans with time and/or treatment are related to altered total vascular surface area. The data suggest that combined cediranib/SC68896 induced potent anti-angiogenic effects, resulting in increased vascular efficiency and reduced extravasation, consistent with a process of vascular normalization. The study represents the first demonstration that the combination of cediranib with a proteasome inhibitor substantially increases the anti-angiogenic efficacy produced from either agent alone, and synergistically slows glioma tumor growth and extends survival, suggesting a promising treatment which warrants further investigation.
Collapse
Affiliation(s)
- Merryl R. Lobo
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ayaka Kukino
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Huong Tran
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Matthias C. Schabel
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Charles S. Springer
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - G. Yancey Gillespie
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marjorie R. Grafe
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Randall L. Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Martin M. Pike
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
9
|
Premkumar DR, Jane EP, Pollack IF. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells. Cancer Biol Ther 2015; 16:233-43. [PMID: 25482928 DOI: 10.4161/15384047.2014.987548] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas.
Collapse
Key Words
- Aurora kinases
- BSA, bovine serum albumin
- DMSO, dimethyl sulfoxide
- EGFR, epidermal growth factor receptor
- FITC, fluorescein isothiocyanate
- Glioma
- MTS, 3-[4, 5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium
- NF-кB, nuclear factor кB
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate-buffered saline
- PDGFR, platelet derived growth factor receptor
- PI, propidium iodide
- PI3K, Phosphatidylinositol 3-Kinase
- TBS, Tris-buffered saline
- TRAIL, tumor necrosis factor–related apoptosis inducing ligand
- caspase-independent cell death
- cell cycle arrest
Collapse
Affiliation(s)
- Daniel R Premkumar
- a Department of Neurosurgery ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | | | |
Collapse
|
10
|
Rovida E, Stecca B. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities? Semin Cancer Biol 2015; 35:154-67. [PMID: 26292171 DOI: 10.1016/j.semcancer.2015.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023]
Abstract
The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to the transmembrane receptor patched and is subsequently mediated by transcriptional effectors belonging to the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the mitogen-activated protein kinases (MAPK) are involved in a number of biological processes and play an important role in many diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be activated as a consequence of aberrant activation of upstream signaling molecules or during development of drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal treatment and prevent tumor relapse.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Patologia, Università degli Studi di Firenze, Firenze, Italy
| | - Barbara Stecca
- Laboratory of Tumor Cell Biology, Core Research Laboratory-Istituto Toscano Tumori (CRL-ITT), Florence, Italy; Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| |
Collapse
|
11
|
Berghauser Pont LME, Spoor JKH, Venkatesan S, Swagemakers S, Kloezeman JJ, Dirven CMF, van der Spek PJ, Lamfers MLM, Leenstra S. The Bcl-2 inhibitor Obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells. Genes Cancer 2015; 5:445-59. [PMID: 25568669 PMCID: PMC4279441 DOI: 10.18632/genesandcancer.42] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/22/2014] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma has shown resistance to histone deacetylase inhibitors (HDACi) as radiosensitizers in cultures with Bcl-XL over-expression. We study the efficacy of SAHA/RTx and LBH589/RTx when manipulating Bcl-2 family proteins using the Bcl-2 inhibitor Obatoclax in patient-derived glioblastoma stem-like cell (GSC) cultures. GSC cultures in general have a deletion in phosphatase and tensin homolog (PTEN). Synergy was determined by the Chou Talalay method. The effects on apoptosis and autophagy were studied by measuring caspase-3/7, Bcl-XL, Mcl-1 and LC3BI/II proteins. The relation between treatment response and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, recurrence and gene expression levels of the tumors were studied. Obatoclax synergized with SAHA and LBH589 and sensitized cells to HDACi/RTx. Over 50% of GSC cultures were responsive to Obatoclax with either single agent. Combined with HDACi/RTx treatment, Obatoclax increased caspase-3/7 and inhibited Bcl-2 family proteins Bcl-XL and Mcl-1 more effectively than other treatments. Genes predictive for treatment response were identified, including the F-box/WD repeat-containing protein-7, which was previously related to Bcl-2 inhibition and HDACi sensitivity. We emphasize the functional relation between Bcl-2 proteins and radiosensitization by HDACi and provide a target for increasing responsiveness in glioblastoma by using the Bcl-2 inhibitor Obatoclax.
Collapse
Affiliation(s)
| | - Jochem K H Spoor
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Jenneke J Kloezeman
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | | | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands ; Department of Neurosurgery, Elisabeth Medical Hospital, Tilburg, The Netherlands
| |
Collapse
|
12
|
Lobo MR, Wang X, Gillespie GY, Woltjer RL, Pike MM. Combined efficacy of cediranib and quinacrine in glioma is enhanced by hypoxia and causally linked to autophagic vacuole accumulation. PLoS One 2014; 9:e114110. [PMID: 25490024 PMCID: PMC4260788 DOI: 10.1371/journal.pone.0114110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
We have previously reported that the in vivo anti-glioma efficacy of the anti-angiogenic receptor tyrosine kinase inhibitor cediranib is substantially enhanced via combination with the late-stage autophagy inhibitor quinacrine. The current study investigates the role of hypoxia and autophagy in combined cediranib/quinacrine efficacy. EF5 immunostaining revealed a prevalence of hypoxia in mouse intracranial 4C8 glioma, consistent with high-grade glioma. MTS cell viability assays using 4C8 glioma cells revealed that hypoxia potentiated the efficacy of combined cediranib/quinacrine: cell viability reductions induced by 1 µM cediranib +2.5 µM quinacrine were 78±7% (hypoxia) vs. 31±3% (normoxia), p<0.05. Apoptosis was markedly increased for cediranib/quinacrine/hypoxia versus all other groups. Autophagic vacuole biomarker LC3-II increased robustly in response to cediranib, quinacrine, or hypoxia. Combined cediranib/quinacrine increased LC3-II further, with the largest increases occurring with combined cediranib/quinacrine/hypoxia. Early stage autophagy inhibitor 3-MA prevented LC3-II accumulation with combined cediranib/quinacrine/hypoxia and substantially attenuated the associated reduction in cell viability. Combined efficacy of cediranib with bafilomycin A1, another late-stage autophagy inhibitor, was additive but lacked substantial potentiation by hypoxia. Substantially lower LC3-II accumulation was observed with bafilomycin A1 in comparison to quinacrine. Cediranib and quinacrine each strongly inhibited Akt phosphoryation, while bafilomycin A1 had no effect. Our results provide compelling evidence that autophagic vacuole accumulation plays a causal role in the anti-glioma cytotoxic efficacy of combined cediranib/quinacrine. Such accumulation is likely related to stimulation of autophagosome induction by hypoxia, which is prevalent in the glioma tumor microenvironment, as well as Akt signaling inhibition from both cediranib and quinacrine. Quinacrine's unique ability to inhibit both Akt and autophagic vacuole degradation may enhance its ability to drive cytotoxic autophagic vacuole accumulation. These findings provide a rationale for a clinical evaluation of combined cediranib/quinacrine therapy for malignant glioma.
Collapse
Affiliation(s)
- Merryl R. Lobo
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics at Oregon Health and Science University, Portland, Oregon, United States of America
| | - G. Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Randall L. Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Martin M. Pike
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
13
|
Guan YS, He Q, Li M. Icotinib: activity and clinical application in Chinese patients with lung cancer. Expert Opin Pharmacother 2014; 15:717-28. [PMID: 24588695 DOI: 10.1517/14656566.2014.890183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Icotinib (BPI-2009H, Conmana) is a novel oral quinazoline compound that has proven survival benefit in Chinese patients with lung cancer, for which several therapies are currently available often with unsatisfactory results. Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. AREAS COVERED The authors' experience in the clinical application of icotinib is reviewed in combination with related publications in the literature. Antitumor activities were observed in non-small-cell lung cancer and others in several recent studies. On 7 June 2011, icotinib was approved by the State Food and Drug Administration of China for the treatment of local advanced or metastatic non-small-cell lung cancer based on the results of a nationwide, of 27 centers, randomized, double-blind, double-modulated, parallel-controlled, Phase III trial with single agent icotinib in lung cancer patients after failure of chemotherapy. EXPERT OPINION Icotinib is a generic drug. Compared to the other two commercially available EGFR tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects but less expensive. Better safety as well as a wider therapeutic window has also been proven in several Chinese studies. Future studies on cost effectiveness are warranted.
Collapse
Affiliation(s)
- Yong-Song Guan
- West China Hospital of Sichuan University, Department of Oncology , Chengdu 610041 , China
| | | | | |
Collapse
|
14
|
Chandramohan V, Bao X, Kaneko MK, Kato Y, Keir ST, Szafranski SE, Kuan CT, Pastan IH, Bigner DD. Recombinant anti-podoplanin (NZ-1) immunotoxin for the treatment of malignant brain tumors. Int J Cancer 2013; 132:2339-48. [PMID: 23115013 PMCID: PMC3809846 DOI: 10.1002/ijc.27919] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 10/05/2012] [Indexed: 11/11/2022]
Abstract
Our study demonstrates the glioma tumor antigen podoplanin to be present at very high levels (>90%) in both glioblastoma (D2159MG, D08-0308MG and D08-0493MG) and medulloblastoma (D283MED, D425MED and DAOY) xenografts and cell line. We constructed a novel recombinant single-chain antibody variable region fragment (scFv), NZ-1, specific for podoplanin from the NZ-1 hybridoma. NZ-1-scFv was then fused to Pseudomonas exotoxin A, carrying a C-terminal KDEL peptide (NZ-1-PE38KDEL). The immunotoxin (IT) was further stabilized by a disulfide (ds) bond between the heavy-chain and light-chain variable regions as the construct NZ-1-(scdsFv)-PE38KDEL. NZ-1-(scdsFv)-PE38KDEL exhibited significant reactivity to glioblastoma and medulloblastoma cells. The affinity of NZ-1-(scdsFv), NZ-1-(scdsFv)-PE38KDEL and NZ-1 antibody for podoplanin peptide was 2.1 × 10(-8) M, 8.0 × 10(-8) M and 3.9 × 10(-10) M, respectively. In a protein stability assay, NZ-1-(scdsFv)-PE38KDEL retained 33-98% of its activity, whereas that of NZ-1-PE38KDEL declined to 13% of its initial levels after incubation at 37°C for 3 days. In vitro cytotoxicity of the NZ-1-(scdsFv)-PE38KDEL was measured in cells isolated from glioblastoma xenografts, D2159MG, D08-0308MG and D08-0493MG, and in the medulloblastoma D283MED, D425MED and DOAY xenografts and cell line. The NZ-1-(scdsFv)-PE38KDEL IT was highly cytotoxic, with an 50% inhibitory concentration in the range of 1.6-29 ng/ml. Significantly, NZ-1-(scdsFv)-PE38KDEL demonstrated tumor growth delay, averaging 24 days (p < 0.001) and 21 days (p < 0.001) in D2159MG and D283MED in vivo tumor models, respectively. Crucially, in the D425MED intracranial tumor model, NZ-1-(scdsFv)-PE38KDEL caused a 41% increase in survival (p ≤ 0.001). In preclinical studies, NZ-1-(scdsFv)-PE38KDEL exhibited significant potential as a targeting agent for malignant brain tumors.
Collapse
Affiliation(s)
- Vidyalakshmi Chandramohan
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC
| | - Xuhui Bao
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mika Kato Kaneko
- Molecular Tumor Marker Research Team, The Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yukinari Kato
- Molecular Tumor Marker Research Team, The Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Stephen T. Keir
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC
| | - Scott E. Szafranski
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC
| | - Chien-Tsun Kuan
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC
| | - Ira H. Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Darell D. Bigner
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC
| |
Collapse
|
15
|
García-Claver A, Lorente M, Mur P, Campos-Martín Y, Mollejo M, Velasco G, Meléndez B. Gene expression changes associated with erlotinib response in glioma cell lines. Eur J Cancer 2013; 49:1641-53. [DOI: 10.1016/j.ejca.2013.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/11/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
|
16
|
NIU HUANJIANG, WANG KUN, ZHANG ANLING, YANG SHUXU, SONG ZHENGFEI, WANG WEI, QIAN CONG, LI XINWEI, ZHU YINXIN, WANG YIRONG. miR-92a is a critical regulator of the apoptosis pathway in glioblastoma with inverse expression of BCL2L11. Oncol Rep 2012; 28:1771-7. [DOI: 10.3892/or.2012.1970] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/13/2012] [Indexed: 11/06/2022] Open
|
17
|
Hoff BA, Bhojani MS, Rudge J, Chenevert TL, Meyer CR, Galbán S, Johnson TD, Leopold JS, Rehemtulla A, Ross BD, Galbán CJ. DCE and DW-MRI monitoring of vascular disruption following VEGF-Trap treatment of a rat glioma model. NMR IN BIOMEDICINE 2012; 25:935-42. [PMID: 22190279 PMCID: PMC4307830 DOI: 10.1002/nbm.1814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 05/16/2023]
Abstract
Vascular-targeted therapies have shown promise as adjuvant cancer treatment. As these agents undergo clinical evaluation, sensitive imaging biomarkers are needed to assess drug target interaction and treatment response. In this study, dynamic contrast enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) were evaluated for detecting response of intracerebral 9 L gliosarcomas to the antivascular agent VEGF-Trap, a fusion protein designed to bind all forms of Vascular Endothelial Growth Factor-A (VEGF-A) and Placental Growth Factor (PGF). Rats with 9 L tumors were treated twice weekly for two weeks with vehicle or VEGF-Trap. DCE- and DW-MRI were performed one day prior to treatment initiation and one day following each administered dose. Kinetic parameters (K(trans), volume transfer constant; k(ep), efflux rate constant from extravascular/extracellular space to plasma; and v(p), blood plasma volume fraction) and the apparent diffusion coefficient (ADC) over the tumor volumes were compared between groups. A significant decrease in kinetic parameters was observed 24 hours following the first dose of VEGF-Trap in treated versus control animals (p < 0.05) and was accompanied by a decline in ADC values. In addition to the significant hemodynamic effect, VEGF-Trap treated animals exhibited significantly longer tumor doubling times (p < 0.05) compared to the controls. Histological findings were found to support imaging response metrics. In conclusion, kinetic MRI parameters and change in ADC have been found to serve as sensitive and early biomarkers of VEGF-Trap anti-vascular targeted therapy.
Collapse
Affiliation(s)
- Benjamin A. Hoff
- Department of Radiology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - Mahaveer S. Bhojani
- Department of Radiation Oncology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - John Rudge
- Department of Regeneron Corporation, 777 Old Saw Mill Road, Tarrytown, NY 10591
| | - Thomas L. Chenevert
- Department of Radiology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - Charles R. Meyer
- Department of Radiology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - Stefanie Galbán
- Department of Radiation Oncology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - Timothy D. Johnson
- Department of Biostatistics University of Michigan, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - Judith Sebolt Leopold
- Department of Radiology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - Brian D. Ross
- Department of Radiology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| | - Craig J. Galbán
- Department of Radiology, Center for Molecular Imaging, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
18
|
Ghafouri-Fard S, Modarressi MH. Expression of cancer-testis genes in brain tumors: implications for cancer immunotherapy. Immunotherapy 2012; 4:59-75. [PMID: 22150001 DOI: 10.2217/imt.11.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer-testis (CT) genes have a restricted expression in normal tissues except testis and a wide range of tumor types. Testis is an immune-privileged site as a result of a blood barrier and lack of HLA class I expression on the surface of germ cells. Hence, if testis-specific genes are expressed in other tissues, they can be immunogenic. Expression of some CT genes in a high percentage of brain tumors makes them potential targets for immunotherapy. In addition, expression of CT genes in cancer stem cells may provide special targets for treatment of cancer recurrences and metastasis. The presence of antibodies against different CT genes in patients with advanced tumors has raised the possibility of polyvalent antitumor vaccine application.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran.
| | | |
Collapse
|
19
|
Xu B, Zheng WY, Jin DY, Wang DS, Liu XY, Qin XY. Treatment of pancreatic cancer using an oncolytic virus harboring the lipocalin-2 gene. Cancer 2012; 118:5217-26. [PMID: 22517373 DOI: 10.1002/cncr.27535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 02/05/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND The 5-year survival rate for patients with pancreatic cancer is <5%, and it is always resistant to the current chemoradiotherapy. Therefore, new, effective agents for the treatment of pancreatic cancer are urgently needed. The promising strategy of cancer-targeting gene virotherapy (CTGVT) has demonstrated great anticancer potential. The objective of the current study was to determine whether 1 CTGVT approach, oncolytic virus (OV)-harboring lipocalin-2, is capable of treating pancreatic cancer. METHODS Tissue microarrays were constructed to detect the expression of lipocalin-2 in 60 specimens of pancreatic adenocarcinoma. The clinical significance of lipocalin-2 was investigated in an analysis of correlations between lipocalin-2 expression and matched clinical characteristics. A lipocalin-2-expressing OV, ZD55-lipocalin-2, was constructed by deleting the adenoviral protein E1B55kD. The antitumor efficacy and mechanisms of the OV were investigated in pancreatic cancer cells with v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in vitro and in vivo. RESULTS Lipocalin-2 expression was correlated with a good prognosis in patients with pancreatic adenocarcinoma. ZD55-lipocalin-2 dramatically inhibited the growth of pancreatic cancer in vitro and in vivo by inducing cytolysis and caspase-dependent apoptosis. CONCLUSIONS Higher lipocalin-2 expression predicted a better prognosis in patients with pancreatic cancer. The results indicated that ZD55-lipocalin-2, which specifically expressed higher levels of lipocalin-2 in tumor cells, may serve as a potent anticancer drug for pancreatic cancer therapy, especially for patients who have pancreatic adenocarcinoma with KRAS mutations.
Collapse
Affiliation(s)
- Bin Xu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
20
|
Cheng Y, Zhang Y, Zhang L, Ren X, Huber-Keener KJ, Liu X, Zhou L, Liao J, Keihack H, Yan L, Rubin E, Yang JM. MK-2206, a novel allosteric inhibitor of Akt, synergizes with gefitinib against malignant glioma via modulating both autophagy and apoptosis. Mol Cancer Ther 2011; 11:154-64. [PMID: 22057914 DOI: 10.1158/1535-7163.mct-11-0606] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Gefitinib, a small molecule inhibitor of the epidermal growth factor receptor tyrosine kinase, has been shown to induce autophagy as well as apoptosis in tumor cells. Yet, how to use autophagy and apoptosis to improve therapeutic efficacy of this drug against cancer remains to be explored. We reported here that MK-2206, a potent allosteric Akt inhibitor currently in phase I trials in patients with solid tumors, could reinforce the cytocidal effect of gefitinib against glioma. We found that cotreatment with gefitinib and MK-2206 increased the cytotoxicity of this growth factor receptor inhibitor in the glioma cells, and the CompuSyn synergism/antagonism analysis showed that MK-2206 acted synergistically with gefitinib. The benefit of the combinatorial treatment was also shown in an intracranial glioma mouse model. In the presence of MK-2206, there was a significant increase in apoptosis in glioma cells treated with gefitinib. MK-2206 also augmented the autophagy-inducing effect of gefitinib, as evidenced by increased levels of the autophagy marker, LC3-II. Inhibition of autophagy by silencing of the key autophagy gene, beclin 1 or 3-MA, further increased the cytotoxicity of this combinatorial treatment, suggesting that autophagy induced by these agents plays a cytoprotective role. Notably, at 48 hours following the combinatorial treatment, the level of LC3-II began to decrease but Bim was significantly elevated, suggesting a switch from autophagy to apoptosis. On the basis of the synergistic effect of MK-2206 on gefitinib observed in this study, the combination of these two drugs may be utilized as a new therapeutic regimen for malignant glioma.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey 17033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li C, Zhou C, Wang S, Feng Y, Lin W, Lin S, Wang Y, Huang H, Liu P, Mu YG, Shen X. Sensitization of glioma cells to tamoxifen-induced apoptosis by Pl3-kinase inhibitor through the GSK-3β/β-catenin signaling pathway. PLoS One 2011; 6:e27053. [PMID: 22046442 PMCID: PMC3203172 DOI: 10.1371/journal.pone.0027053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/10/2011] [Indexed: 11/18/2022] Open
Abstract
Malignant gliomas represent one of the most aggressive types of cancers and their recurrence is closely linked to acquired therapeutic resistance. A combination of chemotherapy is considered a promising therapeutic model in overcoming therapeutic resistance and enhancing treatment efficacy. Herein, we show by colony formation, Hochest 33342 and TUNEL staining, as well as by flow cytometric analysis, that LY294002, a specific phosphatidylinositide-3-kinase (PI3K) inhibitor, enhanced significantly the sensitization of a traditional cytotoxic chemotherapeutic agent, tamoxifen-induced apoptosis in C6 glioma cells. Activation of PI3K signaling pathway by IGF-1 protected U251 cells from apoptosis induced by combination treatment of LY294002 and tamoxifen. Interference of PI3K signaling pathway by PI3K subunit P85 siRNA enhanced the sensitization of U251 glioma cells to tamoxifen -induced apoptosis. By Western blotting, we found that combination treatment showed lower levels of phosphorylated AktSer473 and GSK-3βSer9 than a single treatment of LY294002. Further, we showed a significant decrease of nuclear β-catenin by combination treatment. In response to the inhibition of β-catenin signaling, mRNA and protein levels of Survivin and the other three antiapoptotic genes Bcl-2, Bcl-xL, and Mcl-1 were significantly decreased by combination treatment. Our results indicated that the synergistic cytotoxic effect of LY294002 and tamoxifen is achieved by the inhibition of GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cuixian Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun Zhou
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaogui Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Feng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sisi Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Gao Mu
- Department of Neurosurgery/Neuro-oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YGM); (XS)
| | - Xiaoyan Shen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YGM); (XS)
| |
Collapse
|
22
|
Gaur AB, Holbeck SL, Colburn NH, Israel MA. Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol 2011; 13:580-90. [PMID: 21636706 DOI: 10.1093/neuonc/nor033] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that play a critical role in developmental and physiological processes and are implicated in the pathogenesis of several human diseases, including cancer. They function by regulating target gene expression post-transcriptionally. In this study, we examined the role of oncogenic mir-21 in the pathogenesis of glioblastoma, the most aggressive form of primary brain tumor. We have previously reported that mir-21 is expressed at higher levels in primary glioblastoma-tissue and glioblastoma-derived cell lines than in normal brain tissue. We demonstrate that downregulation of mir-21 in glioblastoma-derived cell lines results in increased expression of its target, programmed cell death 4 (Pdcd4), a known tumor-suppressor gene. In addition, our data indicate that either downregulation of mir-21 or overexpression of its target, Pdcd4, in glioblastoma-derived cell lines leads to decreased proliferation, increased apoptosis, and decreased colony formation in soft agar. Using a glioblastoma xenograft model in immune-deficient nude mice, we observe that glioblastoma-derived cell lines in which mir-21 levels are downregulated or Pdcd4 is over-expressed exhibit decreased tumor formation and growth. Significantly, tumors grow when the glioblastoma-derived cell lines are transfected with anti-mir-21 and siRNA to Pdcd4, confirming that the tumor growth is specifically regulated by Pdcd4. These critical in vivo findings demonstrate an important functional linkage between mir-21 and Pdcd4 and further elucidate the molecular mechanisms by which the known high level of mir-21 expression in glioblastoma can attribute to tumorigenesis--namely, inhibition of Pdcd4 and its tumor-suppressive functions.
Collapse
Affiliation(s)
- Arti B Gaur
- Department of Pediatrics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03755, USA.
| | | | | | | |
Collapse
|
23
|
Sengupta R, Sun T, Warrington NM, Rubin JB. Treating brain tumors with PDE4 inhibitors. Trends Pharmacol Sci 2011; 32:337-44. [PMID: 21450351 DOI: 10.1016/j.tips.2011.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/18/2022]
Abstract
Speculation regarding dysregulation of cAMP metabolism in oncogenesis has existed since the discovery of cAMP more than 50 years ago. Recent data confirm the relevance of disordered cAMP metabolism to the genesis of multiple cancers and suggest that the mechanism might involve altered expression and activity of phosphodiesterases (PDEs). These discoveries coincide with the rapid development and clinical evaluation of PDE inhibitors for non-cancer indications. Thus, the time is ripe to evaluate PDE inhibitors as cancer chemotherapeutics. Here we highlight recent evidence that abnormal regulation of cAMP levels might be a determinant of brain tumorigenesis and that altered PDE expression is one the mechanisms of its dysregulation. Recent preclinical and clinical experience with inhibitors of PDE4 indicates that this might be a promising approach to brain tumor therapy.
Collapse
Affiliation(s)
- Rajarshi Sengupta
- Department of Pediatrics, Campus Box 8208, 660 South Euclid Ave, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
24
|
Growth Inhibition and Induction of Apoptosis in SHG-44 Glioma Cells by Chinese Medicine Formula "Pingliu Keli". EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953401 PMCID: PMC2952337 DOI: 10.1155/2011/958243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/01/2010] [Accepted: 06/30/2010] [Indexed: 02/06/2023]
Abstract
The present study was carried out to evaluate the effects of the water extract of Chinese medicine “Pingliu Keli” (PK) on human glioma cell viability and apoptosis and to investigate its mechanisms of action in SHG-44 cells. MTT assay showed that PK had a strong cytotoxic effect on SHG-44 cells. The number of live cells was less than 20% after exposure to 90 μg/mL PK for 24 h. PK increased cytotoxicity of SHG-44 cells in a dose-dependent manner. PK caused arrest of SHG-44 cells in G1 phase at low concentration and in G2 phase at high concentration. The percentage of apoptotic cells by flow cytometric analysis of the DNA-stained cells increased to 38% and 52% after treatment with 72 and 108 μg/mL PK, respectively. In addition, PK increased the expression of proapoptotic protein (Bax) and decreased antiapoptotic protein (Bcl-2), with a concomitant increase in the levels of cleaved caspase-3, cleaved caspase-9 and cleaved poly-ADP-ribose polymerase (PARP). These results suggest that PK has a significant apoptosis inducing effect on SHG-44 glioma cells in vitro and caspase-3 may act as a potential mediator in the process.
Collapse
|
25
|
Pollack IF, Hamilton RL, Burger PC, Brat DJ, Rosenblum MK, Murdoch GH, Nikiforova MN, Holmes EJ, Zhou T, Cohen KJ, Jakacki RI. Akt activation is a common event in pediatric malignant gliomas and a potential adverse prognostic marker: a report from the Children's Oncology Group. J Neurooncol 2010; 99:155-63. [PMID: 20607350 DOI: 10.1007/s11060-010-0297-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/24/2010] [Indexed: 12/01/2022]
Abstract
Aberrant activation of Akt is a common finding in adult malignant gliomas, resulting in most cases from mutations or deletions involving PTEN, which allows constitutive Akt phosphorylation. In contrast, we have previously reported that pediatric malignant gliomas, which are morphologically similar to lesions arising in adults, have a substantially lower incidence of genomic alterations of PTEN. The objective of this study was to determine whether Akt activation was also an uncommon finding in childhood malignant gliomas and whether this feature was associated with survival. To address this issue, we examined the frequency of Akt activation, determined by overexpression of the activated phosphorylated form of Akt (Se(473)) on immunohistochemical analysis, in a series of 53 childhood malignant gliomas obtained from newly diagnosed patients treated on the Children's Oncology Group ACNS0126 and 0423 studies. The relationship between Akt activation and p53 overexpression, MIB1 labeling, and tumor histology was evaluated. The association between Akt activation and survival was also assessed. Overexpression of activated Akt was observed in 42 of 53 tumors, far in excess of the frequency of PTEN mutations we have previously observed. There was no association between Akt activation and either histology, p53 overexpression, or MIB1 proliferation indices. Although tumors that lacked Akt overexpression had a trend toward more favorable event-free survival and overall survival (p = 0.06), this association reflected that non-overexpressing tumors were significantly more likely to have undergone extensive tumor removal, which was independently associated with outcome. Activation of Akt is a common finding in pediatric malignant gliomas, although it remains uncertain whether this is an independent adverse prognostic factor. In view of the frequency of Akt activation, the evaluation of molecularly targeted therapies that inhibit this pathway warrants consideration for these tumors.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|