1
|
Khedr EM, Mahmoud DM, Ahmed GK, Haridy NA. Predictors of long-term health-related quality of life in Guillain-Barré syndrome: A hospital-based study. Clin Neurol Neurosurg 2023; 235:108026. [PMID: 37913589 DOI: 10.1016/j.clineuro.2023.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE This study aimed to determine the impact of patients' baseline clinical, neurophysiological data, and management plan of Guillain-Barré syndrome (GBS) on long-term quality of life (QoL) and to identify its potential predictors. METHODS Seventy-nine GBS patients were recruited. On admission, participants were evaluated using the Medical Research Council (MRC) sumscore, GBS disability scale (GDS), and Erasmus GBS Respiratory Insufficiency Score (EGRIS). Neurophysiological data were collected, and a management plan was devised. MRC sumscore was repeated at nadir. MRC, GDS and Short Form Survey (SF-36) were assessed at first-year follow-up. RESULTS The mean age was 37.84 ± 17.26 years, with 43 male patients (54.4%). QoL at one year correlated significantly with baseline clinical variables (age, number of days between weakness and admission, MRC sumscore at onset and nadir, high GDS, and EGRIS scores). Antecedent events, especially diarrhoea, neck muscle weakness, autonomic dysfunction, cranial nerve involvement, and mechanical ventilation (MV), associated with worse QoL. Axonal GBS patients had lower QoL than AIDP patients, and PE patients exhibited lower QoL than IVIG patients. Multiple regression analysis showed that older age, diarrhoea, number of days between weakness and admission, neck muscle weakness, cranial nerve involvement, autonomic dysfunction, early MV, and MRC at onset and nadir and high GDS could predict poor QoL. CONCLUSION Older age, more days between weakness and admission, neck muscle weakness, cranial nerve involvement, autonomic dysfunction, early MV, diarrhoea, low MRC at onset and nadir, high GDS at onset, axonal type, and PE treatment were potential predictors of poor QoL in GBS.
Collapse
Affiliation(s)
- Eman M Khedr
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Doaa M Mahmoud
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Gellan K Ahmed
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nourelhoda A Haridy
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Gunasekaran M, Chatterjee PK, Shih A, Imperato GH, Addorisio M, Kumar G, Lee A, Graf JF, Meyer D, Marino M, Puleo C, Ashe J, Cox MA, Mak TW, Bouton C, Sherry B, Diamond B, Andersson U, Coleman TR, Metz CN, Tracey KJ, Chavan SS. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons. Front Immunol 2018; 9:638. [PMID: 29755449 PMCID: PMC5932385 DOI: 10.3389/fimmu.2018.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.
Collapse
Affiliation(s)
- Manojkumar Gunasekaran
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Prodyot K. Chatterjee
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andrew Shih
- Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gavin H. Imperato
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Meghan Addorisio
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gopal Kumar
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Annette Lee
- Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - John F. Graf
- GE Global Research Center, Niskayuna, NY, United States
| | - Dan Meyer
- GE Global Research Center, Niskayuna, NY, United States
| | | | | | - Jeffrey Ashe
- GE Global Research Center, Niskayuna, NY, United States
| | - Maureen A. Cox
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Chad Bouton
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Barbara Sherry
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Thomas R. Coleman
- Center for Molecular Innovation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Christine N. Metz
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Kevin J. Tracey
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S. Chavan
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|