1
|
Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2022; 29:647-660. [PMID: 34158626 DOI: 10.1038/s41417-021-00359-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an encouraging and fast-growing platform used for the treatment of various types of tumors in human body. Despite the recent success of CAR T-cell therapy in hematologic malignancies, especially in B-cell lymphoma and acute lymphoblastic leukemia, the application of this treatment approach in solid tumors faced several obstacles resulted from the heterogeneous expression of antigens as well as the induction of immunosuppressive tumor microenvironment. Oncolytic virotherapy (OV) is a new cancer treatment modality by the use of competent or genetically engineered viruses to replicate in tumor cells selectively. OVs represent potential candidates to synergize the current setbacks of CAR T-cell application in solid tumors and then and overcome them. As well, the application of OVs gives researches the ability to engineer the virus with payloads in the way that it selectively deliver a specific therapeutic agents in tumor milieu to reinforce the cytotoxic activity of CAR T cells. Herein, we made a comprehensive review on the outcomes resulted from the combination of CAR T-cell immunotherapy and oncolytic virotherapy for the treatment of solid cancers. In the current study, we also provided brief details on some challenges that remained in this field and attempted to shed a little light on the future perspectives.
Collapse
|
2
|
Sedgwick AJ, Ghazanfari N, Constantinescu P, Mantamadiotis T, Barrow AD. The Role of NK Cells and Innate Lymphoid Cells in Brain Cancer. Front Immunol 2020; 11:1549. [PMID: 32903717 PMCID: PMC7438769 DOI: 10.3389/fimmu.2020.01549] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
The brain is considered an immune privileged site due to the high selectivity of the blood-brain barrier which restricts the passage of molecules and cells into the brain parenchyma. Recent studies have highlighted active immunosurveillance mechanisms in the brain. Here we review emerging evidence for the contribution of innate lymphoid cells (ILCs) including natural killer (NK) cells to the immunosurveillance of brain cancers focusing on glioblastoma, one of the most aggressive and most common malignant primary brain tumors diagnosed in adults. Moreover, we discuss how the local tissue microenvironment and unique cellular interactions influence ILC functions in the brain and how these interactions might be successfully harnessed for cancer immunotherapy using insights gained from the studies of autoimmunity, aging, and CNS injury.
Collapse
Affiliation(s)
- Alexander James Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nazanin Ghazanfari
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Patrick Constantinescu
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Deng H, Liu H, de Silva T, Xue Y, Mohamud Y, Ng CS, Qu J, Zhang J, Jia WW, Lockwood WW, Luo H. Coxsackievirus Type B3 Is a Potent Oncolytic Virus against KRAS-Mutant Lung Adenocarcinoma. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:266-278. [PMID: 31463367 PMCID: PMC6709373 DOI: 10.1016/j.omto.2019.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/13/2019] [Indexed: 02/05/2023]
Abstract
KRAS mutant (KRASmut) lung adenocarcinoma is a refractory cancer without available targeted therapy. The current study explored the possibility to develop coxsackievirus type B3 (CVB3) as an oncolytic agent for the treatment of KRASmut lung adenocarcinoma. In cultured cells, we discovered that CVB3 selectively infects and lyses KRASmut lung adenocarcinoma cells (A549, H2030, and H23), while sparing normal lung epithelial cells (primary, BEAS2B, HPL1D, and 1HAEo) and EGFRmut lung adenocarcinoma cells (HCC4006, PC9, H3255, and H1975). Using stable cells expressing a single driver mutation of either KRASG12V or EGFRL858R in normal lung epithelial cells (HPL1D), we further showed that CVB3 specifically kills HPL1D-KRASG12V cells with minimal harm to HPL1D-EGFRL858R and control cells. Mechanistically, we demonstrated that aberrant activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and compromised type I interferon immune response in KRASmut lung adenocarcinoma cells serve as key factors contributing to the sensitivity to CVB3-induced cytotoxicity. Lastly, we conducted in vivo xenograft studies using two immunocompromised mouse models. Our results revealed that intratumoral injection of CVB3 results in a marked tumor regression of KRASmut lung adenocarcinoma in both non-obese diabetic (NOD) severe combined immunodeficiency (SCID) gamma (NSG) and NOD-SCID xenograft models. Together, our findings suggest that CVB3 is an excellent candidate to be further developed as a targeted therapy for KRASmut lung adenocarcinoma.
Collapse
Affiliation(s)
- Haoyu Deng
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huitao Liu
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tanya de Silva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - YuanChao Xue
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chen Seng Ng
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Junyan Qu
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingchun Zhang
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William W.G. Jia
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
- Corresponding author: William W. Lockwood, Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Corresponding author: Honglin Luo, Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
4
|
Ajina A, Maher J. Synergistic combination of oncolytic virotherapy with CAR T-cell therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:217-292. [PMID: 31383406 DOI: 10.1016/bs.pmbts.2019.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For patients with advanced hematological malignancies the therapeutic landscape has been transformed by the emergence of adoptive cell transfer utilizing autologous chimeric antigen receptor (CAR)-redirected T-cells. However, solid tumors have proved far more resistant to this approach. Here, we summarize the numerous challenges faced by CAR T-cells designed to target solid tumors, highlighting, in particular, issues related to impaired trafficking, expansion, and persistence. In parallel, we draw attention to exciting developments in the burgeoning field of oncolytic virotherapy and posit strategies for the synergistic combination of oncolytic viruses with CAR T-cells to improve outcomes for patients with advanced solid tumors.
Collapse
Affiliation(s)
- Adam Ajina
- King's College London, Division of Cancer Studies, Guy's Hospital, London, United Kingdom.
| | - John Maher
- King's College London, Division of Cancer Studies, Guy's Hospital, London, United Kingdom; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Immunology, Eastbourne Hospital, East Sussex, United Kingdom
| |
Collapse
|
5
|
Cai R, Meng G, Li Y, Wang W, Diao Y, Zhao S, Feng Q, Tang Y. The oncolytic efficacy and safety of avian reovirus and its dynamic distribution in infected mice. Exp Biol Med (Maywood) 2019; 244:983-991. [PMID: 31299861 DOI: 10.1177/1535370219861928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Primary liver cancer is a major public health challenge that ranks as the third most common cause of cancer worldwide despite therapeutic improvement. Reovirus has been emerging as a potential anti-cancer agent and is undergoing multiple clinical trials, and it is reported that reovirus can preferentially cause the cell death of a variety of cancers in a manner of apoptosis. As few studies have reported the efficacy of oncolytic activity and safety profile of avian reovirus, in our study, LDH assay, MTT assay, DAPI staining, and flow cytometry assay were performed to demonstrate the oncolytic effects of avian reovirus against the HepG2 cells, and quantitative real-time PCR (qRT-PCR) and animal experiments were conducted to investigate the dynamic distribution of avian reovirus in infected mice and then illustrate the safety and tissue tropism of avian reovirus. LDH assay, DAPI staining, and flow cytometry assay confirmed the efficacy of the oncotherapeutic effects of avian reovirus, and MTT assay has indicated that avian reovirus suppressed the proliferation of HepG2 cells and decreased their viability significantly. qRT-PCR revealed the dynamic distribution of avian reovirus in infected mice that avian reovirus might replicate better and have more powerful oncolytic activity in liver, kidney, and spleen tissues. Furthermore, histopathological examination clearly supported that avian reovirus appeared non-pathogenic to the normal host, so our study may provide the new insights and rationale for the new strategy of removing liver cancer. Impact statement We demonstrated the efficacy of oncolytic activity of avian reovirus (ARV) by LDH assay, MTT assay, DAPI staining, and flow cytometry assay, and also investigated the dynamic distribution of ARV in infected mice and then illustrated the safety and tissue tropism of ARV by quantitative real-time PCR (qRT-PCR) and animal experiments. Collectively, our study may provide the new insights and rationale for the new strategy of removing liver cancer.
Collapse
Affiliation(s)
- Ruimin Cai
- 1 Department of Clinical Laboratory, Taian Central Hospital, Taian 271000, China.,2 Department of Public Health, Taishan Medical University, Taian 271000, China
| | - Guangyuan Meng
- 1 Department of Clinical Laboratory, Taian Central Hospital, Taian 271000, China
| | - Yi Li
- 1 Department of Clinical Laboratory, Taian Central Hospital, Taian 271000, China
| | - Wenyang Wang
- 1 Department of Clinical Laboratory, Taian Central Hospital, Taian 271000, China
| | - Youxiang Diao
- 3 College of Animal Science and Technology, Shandong Agricultural University, Taian 271000, China
| | - Shuping Zhao
- 1 Department of Clinical Laboratory, Taian Central Hospital, Taian 271000, China
| | - Qiang Feng
- 1 Department of Clinical Laboratory, Taian Central Hospital, Taian 271000, China
| | - Yi Tang
- 3 College of Animal Science and Technology, Shandong Agricultural University, Taian 271000, China
| |
Collapse
|
6
|
Ajina A, Maher J. Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 2017; 5:90. [PMID: 29157300 PMCID: PMC5696728 DOI: 10.1186/s40425-017-0294-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
With the approval of talimogene laherparepvec (T-VEC) for inoperable locally advanced or metastatic malignant melanoma in the USA and Europe, oncolytic virotherapy is now emerging as a viable therapeutic option for cancer patients. In parallel, following the favourable results of several clinical trials, adoptive cell transfer using chimeric antigen receptor (CAR)-redirected T-cells is anticipated to enter routine clinical practice for the management of chemotherapy-refractory B-cell malignancies. However, CAR T-cell therapy for patients with advanced solid tumours has proved far less successful. This Review draws upon recent advances in the design of novel oncolytic viruses and CAR T-cells and provides a comprehensive overview of the synergistic potential of combination oncolytic virotherapy with CAR T-cell adoptive cell transfer for the management of solid tumours, drawing particular attention to the methods by which recombinant oncolytic viruses may augment CAR T-cell trafficking into the tumour microenvironment, mitigate or reverse local immunosuppression and enhance CAR T-cell effector function and persistence.
Collapse
Affiliation(s)
- Adam Ajina
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - John Maher
- King’s College London, CAR Mechanics Group, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London, SE1 9RT UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
7
|
Jaime-Ramirez AC, Yu JG, Caserta E, Yoo JY, Zhang J, Lee TJ, Hofmeister C, Lee JH, Kumar B, Pan Q, Kumar P, Baiocchi R, Teknos T, Pichiorri F, Kaur B, Old M. Reolysin and Histone Deacetylase Inhibition in the Treatment of Head and Neck Squamous Cell Carcinoma. Mol Ther Oncolytics 2017; 5:87-96. [PMID: 28812060 PMCID: PMC5440762 DOI: 10.1016/j.omto.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/03/2017] [Indexed: 02/09/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as powerful anti-cancer agents and are currently being tested for their safety and efficacy in patients. Reovirus (Reolysin), a naturally occurring non-pathogenic, double-stranded RNA virus, has natural oncolytic activity and is being tested in phase I-III clinical trials in a variety of tumor types. With its recent US Food and Drug Administration (FDA) orphan drug designation for several tumor types, Reolysin is a potential therapeutic agent for various cancers, including head and neck squamous cell carcinomas (HNSCCs), which have a 5-year survival of ∼55%. Histone deacetylase inhibitors (HDACis) comprise a structurally diverse class of compounds with targeted anti-cancer effects. The first FDA-approved HDACi, vorinostat (suberoylanilide hydroxamic acid [SAHA]), is currently being tested in patients with head and neck cancer. Recent findings indicate that HDAC inhibition in myeloma cells results in the upregulation of the Reolysin entry receptor, junctional adhesion molecule 1 (JAM-1), facilitating reovirus infection and tumor cell killing both in vitro and in vivo. In this study, we tested the anti-tumor efficacy of HDAC inhibitors AR-42 or SAHA in conjunction with Reolysin in HNSCCs. While HDAC inhibition increased JAM-1 and reovirus entry, the impact of this combination therapy was tested on the development of anti-tumor immune responses.
Collapse
Affiliation(s)
| | - Jun-Ge Yu
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Enrico Caserta
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ji Young Yoo
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianying Zhang
- Biomedical Informatics Department, Center for Biostatistics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tae Jin Lee
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Craig Hofmeister
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John H. Lee
- Department of Otolaryngology/Head and Neck Surgery, Sanford Health, Sioux Falls, SD 57105, USA
| | - Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Baiocchi
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Theodoros Teknos
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Flavia Pichiorri
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Balveen Kaur
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Old
- Department of Otolaryngology-Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Yoo JY, Jaime-Ramirez AC, Bolyard C, Dai H, Nallanagulagari T, Wojton J, Hurwitz BS, Relation T, Lee TJ, Lotze MT, Yu JG, Zhang J, Croce CM, Yu J, Caligiuri MA, Old M, Kaur B. Bortezomib Treatment Sensitizes Oncolytic HSV-1-Treated Tumors to NK Cell Immunotherapy. Clin Cancer Res 2016; 22:5265-5276. [PMID: 27390350 PMCID: PMC5093037 DOI: 10.1158/1078-0432.ccr-16-1003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Both the proteasome inhibitor bortezomib and an oncolytic herpes simplex virus-1 (oHSV)-expressing GM-CSF are currently FDA approved. Although proteasome blockade can increase oHSV replication, immunologic consequences, and consequent immunotherapy potential are unknown. In this study, we investigated the impact of bortezomib combined with oHSV on tumor cell death and sensitivity to natural killer (NK) cell immunotherapy. EXPERIMENTAL DESIGN Western blot, flow cytometry, and caspase 3/7 activity assays were used to evaluate the induction of apoptosis/autophagy and/or necroptotic cell death. Cellular and mitochondrial reactive oxygen species (ROS) production was measured using CellROX and MitoSOX. Inhibitors/shRNA-targeting ROS, JNK and RIP1 kinase (RIPK1) were used to investigate the mechanism of cell killing. The synergistic interaction between oHSV and bortezomib was calculated using a Chou-Talalay analysis. NK cells isolated from normal human blood were co-cultured with tumor cells to evaluate cellular interactions. Q-PCR, ELISA, and FACS analysis were used to evaluate NK cell activation. Intracranial tumor xenografts were used to evaluate antitumor efficacy. RESULTS Combination treatment with bortezomib- and oHSV-induced necroptotic cell death and increased the production of mitochondrial ROS and JNK phosphorylation. Inhibitors/shRNA of RIPK1 and JNK rescued synergistic cell killing. Combination treatment also significantly enhanced NK cell activation and adjuvant NK cell therapy of mice treated with bortezomib and oHSV improved antitumor efficacy. CONCLUSIONS This study provides a significant rationale for triple combination therapy with bortezomib, oHSV, and NK cells to improve efficacy, in glioblastoma patients. Clin Cancer Res; 22(21); 5265-76. ©2016 AACRSee related commentary by Suryadevara et al., p. 5164.
Collapse
Affiliation(s)
- Ji Young Yoo
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chelsea Bolyard
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Hongsheng Dai
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tejaswini Nallanagulagari
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Chemistry and Biochemistry, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Microbiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jeffrey Wojton
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Neuroscience Graduate Studies Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brian S Hurwitz
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Biomedical Science Major, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Theresa Relation
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Medical Scientist Training Program, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tae Jin Lee
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Michael T Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Jun-Ge Yu
- Department of Otolaryngology, Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jianying Zhang
- Department of Biomedical Informatics, Center for Biostatistics, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Old
- Department of Otolaryngology, Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Balveen Kaur
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
9
|
To Infection and Beyond: The Multi-Pronged Anti-Cancer Mechanisms of Oncolytic Viruses. Viruses 2016; 8:v8020043. [PMID: 26861381 PMCID: PMC4776198 DOI: 10.3390/v8020043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/17/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
Over the past 1–2 decades we have witnessed a resurgence of efforts to therapeutically exploit the attributes of lytic viruses to infect and kill tumor cells while sparing normal cells. We now appreciate that the utility of viruses for treating cancer extends far beyond lytic cell death. Viruses are also capable of eliciting humoral and cellular innate and adaptive immune responses that may be directed not only at virus-infected cells but also at uninfected cancer cells. Here we review our current understanding of this bystander effect, and divide the mechanisms into lytic, cytokine, innate cellular, and adaptive phases. Knowing the key pathways and molecular players during virus infection in the context of the cancer microenvironment will be critical to devise strategies to maximize the therapeutic effects of oncolytic viroimmunotherapy.
Collapse
|
10
|
Zhu J, Wang H, Fan Y, Lin Y, Zhang L, Ji X, Zhou M. Targeting the NF-E2-related factor 2 pathway: a novel strategy for glioblastoma (review). Oncol Rep 2014; 32:443-50. [PMID: 24926991 DOI: 10.3892/or.2014.3259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/26/2014] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most common and malignant subtype among all brain tumors. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a variety of endogenous and exogenous stresses. A marked increase in research over the past few decades focusing on Nrf2 and its role in regulating glioblastoma has revealed the potential value of Nrf2 in the treatment of glioblastoma. In the present review, we discuss a novel framework of Nrf2 in the regulation of glioblastoma and the mechanisms regarding the downregulation of Nrf2 in treating glioblastoma. The candidate mechanisms include direct and indirect means. Direct mechanisms target tumor molecular pathways in order to overcome resistance to chemotherapy and radiotherapy, to inhibit proliferation, to block invasion and migration, to induce apoptosis, to promote differentiation, to enhance autophagy and to target glioblastoma stem cells. Indirect mechanisms target the reaction between glioblastoma cells and the surrounding microenvironment. Overall, the value of the Nrf2 pathway in glioblastoma provides a promising opportunity for new approaches by which to treat glioblastoma.
Collapse
Affiliation(s)
- Jianhong Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|