1
|
Tahir Aleem M, Munir F, Shakoor A, Ud Din Sindhu Z, Gao F. Advancement in the development of DNA vaccines against Trypanosoma brucei and future perspective. Int Immunopharmacol 2024; 140:112847. [PMID: 39088922 DOI: 10.1016/j.intimp.2024.112847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Trypanosomes are the extracellular protozoan parasites that cause human African trypanosomiasis disease in humans and nagana disease in animals. Tsetse flies act as a vector for the transmission of the disease in African countries. Animals infected with these parasites become useless or workless, and if not treated, disease can be fatal. There are many side effects associated with old treatments and some of them result in death in 5% of cases. There is a major surface glycoprotein in the parasite known as variant surface glycoprotein. The immune system of the host develops antibodies against this antigen but due to antigenic variation, parasites evade the immune response. Currently, no vaccine is available that provides complete protection. In murine models, only partial protection was observed using certain antigens. In order to develop vaccines against trypanosomes, molecular biology and immunology tools have been used. Immunization is the sole method for the control of disease because the eradication of the vector from endemic areas is an impossible task. Genetic vaccines can carry multiple genes encoding different antigens of the same parasite or different parasites. DNA immunization induces the activation of both cellular immune response and humoral immune response along with the generation of memory. This review highlights the importance of DNA vaccines and advances in the development of DNA vaccines against T. brucei.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 9, 38040, Pakistan
| | - Zia Ud Din Sindhu
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
2
|
Nayeri T, Sarvi S, Fasihi-Ramandi M, Valadan R, Asgarian-Omran H, Ajami A, Khalilian A, Hosseininejad Z, Dodangeh S, Javidnia J, Daryani A. Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice. Exp Parasitol 2022; 244:108427. [PMID: 36379272 DOI: 10.1016/j.exppara.2022.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Toxoplasma gondii (T. gondii) causes considerable financial losses in the livestock industry and can present serious threats to pregnant women, as well as immunocompromised patients. Therefore, it is required to design and produce an efficient vaccine for controlling toxoplasmosis. The present study aimed to evaluate the protective immunity induced by RMS protein (ROP18, MIC4, and SAG1) with Freund adjuvant, calcium phosphate nanoparticles (CaPNs), and chitosan nanoparticles (CNs) in BALB/c mice. The RMS protein was expressed in Escherichia coli (E. coli) and purified using a HisTrap HP column. Thereafter, cellular and humoral immunity was assessed by injecting RMS protein on days 0, 21, and 35 into four groups [RMS, RMS-chitosan nanoparticles (RMS-CNs), RMS-calcium phosphate nanoparticles (RMS-CaPNs), and RMS-Freund]. Phosphate buffered saline (PBS), CNs, CaPNs, and Freund served as the four control groups. The results displayed that vaccination with RMS protein and adjuvants significantly elicited the levels of specific IgG antibodies and cytokines against toxoplasmosis. There were high levels of total IgG, IgG2a, and IFN-γ in vaccinated mice, compared to those in the control groups, especially in the RMS-Freund, indicating a Th-1 type response. The vaccinated and control mice were challenged intraperitoneally with 1 × 103 tachyzoites of the T. gondii RH strain four weeks after the last injection, and in RMS-Freund and RMS-CaPNs groups, the highest increase in survival time was observed (15 days). The RMS can significantly increase Th1 and Th2 responses; moreover, multi-epitope vaccines with adjuvants can be a promising strategy for the production of a vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Tooran Nayeri
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Valadan
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khalilian
- Department of Biostatistics and Community Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Javad Javidnia
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Risk Factors of Noncompliance to Preventive Mass Drug Administration for Eliminating Lymphatic Filariasis: A Case-Control Study in Jawi District, Northwest Ethiopia. J Trop Med 2022; 2022:4792280. [PMID: 36187459 PMCID: PMC9519346 DOI: 10.1155/2022/4792280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background. High compliance is crucial for the success of a mass drug administration program to achieve lymphatic filariasis elimination. However, the presence of persistently noncompliant individuals might delay the elimination target. Besides, although context-based research is essential to designing effective strategies, only a few studies have focused on identifying factors that play a role in noncompliance with mass drug administration in Africa. Therefore, this study was conducted to identify the factors associated with noncompliance to prevent mass drug administration using ivermectin-with-albendazole for the elimination of lymphatic filariasis in Northwest Ethiopia. Methods. A case-control study was conducted in Jawi District, Northwest Ethiopia. All individuals who are permanently living in the study area and registered on the annual chemotherapy registration book since 2015 were included in this study. A two-proportion formula was used to estimate the required sample size and 348 cases and 348 controls were selected by identification number on the village chemotherapy registration book using a systematic sampling technique. Data were collected by face-to-face interviews using a structured questionnaire developed through an intensive literature review. Then, data were entered and cleaned by using the EPI DATA software, and analyses were conducted using SPSS version 26. Finally, a logistic regression analysis technique was applied to identify the risk factors using adjusted odds ratio as measures of effect. Results. A total of 690 (99.1%) participants, 345 cases and 345 controls, were included in the study. Younger age (AOR = 1.60; 95%CI: 1.10, 2.33), female sex (AOR = 1.56; 95%CI: 1.24, 3.93), thought of not being susceptible to the disease (AOR = 2.36, 95%CI: 1.80, 4.32), lack of disease knowledge (AOR = 1.88; 95% CI: 1.38, 3.81), fear of drug side effect (AOR = 2.45; 95% CI:1.23, 4.86), and not participating in community drug distributors selection (AOR = 2.58; 95% CI: 1.70, 3.91) were found to be the risk factors significantly associated with noncompliance. Conclusion. Noncompliance with lymphatic filariasis mass drug administration therapy was associated with specific demographic, individual, program, and drug delivery characteristics. This finding has important implications for program effectiveness and would be used to accelerate the elimination of lymphatic filariasis in the study area and other endemic settings.
Collapse
|
4
|
Anticipation of Antigenic Sites for the Goal of Vaccine Designing Against Nipah Virus: An Immunoinformatics Inquisitive Quest. Int J Pept Res Ther 2021; 27:1899-1911. [PMID: 33994898 PMCID: PMC8112743 DOI: 10.1007/s10989-021-10219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022]
Abstract
With time, the Nipah virus has been proved as a fatal and dangerous pathogen for humanity. Nipah virus has its origin from bats and severely affects the respiratory as well as neurological organs. Regular outbreaks and unavailability of proper treatment for Nipah virus infection, demands the designing of vaccine for this disease. This prediction study was conducted to explore B cell epitopes from the Nipah virus’s proteome using the immunoinformatics approach. In this curious quest of anticipation of antigenic sites for the Insilico peptide vaccine for the Nipah virus, nine NV-B strain proteins were retrieved for further series of investigations. After sequential refining through immunoinformatics approaches, a total of 26 epitopes was selected to perform molecular modeling and docking. PEPstrMOD and Swiss model, respectively performed 3D modeling of epitopes with their respective alleles. Based on minimum binding energy, four epitopes viz. LHLGNFVRR, LNLSPLIQR, YHNMSPINR and FRRNNAIAF were predicted as promiscuous B cell epitopes. Based on low binding affinity and high population coverage worldwide, epitope LHLGNFVRR was finally selected. Increased Stability of the LHLGNFVRR- HLA DRB_1301 complex during simulation studies exhibit it as the most promising vaccine bidder. So complex of LHLGNFVRR- HLA DRB_1301 has shown most significance result for vaccine and for further validation and confirmation, wet lab and clinical trials can provide the potential of predicted peptides for the subunit vaccine.
Collapse
|
5
|
A. Gómez L, A. Oñate A. Plasmid-Based DNA Vaccines. Plasmid 2019. [DOI: 10.5772/intechopen.76754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Abstract
INTRODUCTION Toxoplasma gondii is an intracellular parasitic protozoan that infects almost all warm-blooded animals and humans, resulting in threats to public health and economic losses. Despite continuous research efforts, there are still very few effective strategies against toxoplasmosis. In the past few years, numerous vaccination experiments have been performed to control T. gondii infection. AREAS COVERED In this review, the authors summarize the development of T. gondii vaccines with proper adjuvants, ranging from live or live-attenuated vaccines to protein vaccines, DNA vaccines, epitope vaccines and novel vaccines. They also highlight the challenges involved in the development of T. gondii vaccines, including specific impediments and shortcomings. EXPERT OPINION Moving towards the development of effective vaccines against T. gondii is not only a tedious mission but also a difficult challenge. Future studies should consider new approaches and strategies for vaccine development, particularly novel vaccines and genetic adjuvants, as well as optimizing immunization protocols and evaluation criteria.
Collapse
Affiliation(s)
- Yawen Li
- a Department of Pathogen Biology , School of Basic Medical Sciences, Shandong University , Jinan , Shandong , PR China
| | - Huaiyu Zhou
- a Department of Pathogen Biology , School of Basic Medical Sciences, Shandong University , Jinan , Shandong , PR China
| |
Collapse
|
7
|
Farris E, Brown DM, Ramer-Tait AE, Pannier AK. Micro- and nanoparticulates for DNA vaccine delivery. Exp Biol Med (Maywood) 2016; 241:919-29. [PMID: 27048557 PMCID: PMC4950349 DOI: 10.1177/1535370216643771] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective immune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpensive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to immune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA represent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection efficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through administration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel biomaterial-based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their implications for generating immune responses.
Collapse
Affiliation(s)
- Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Preclinical safety and tolerability of a repeatedly administered human leishmaniasis DNA vaccine. Gene Ther 2015; 22:628-35. [PMID: 25871827 PMCID: PMC4530203 DOI: 10.1038/gt.2015.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 12/24/2022]
Abstract
The leishmaniases are a complex of vector-borne diseases caused by protozoan parasites of the genus Leishmania. LEISHDNAVAX is a multi-antigen, T-cell epitope-enriched DNA vaccine candidate against human leishmaniasis. The vaccine candidate has been proven immunogenic and showed prophylactic efficacy in preclinical studies. Here, we describe the safety testing of LEISHDNAVAX in naive mice and rats, complemented by the demonstration of tolerability in Leishmania-infected mice. Biodistribution and persistence were examined following single and repeated intradermal (i.d.) administration to rats. DNA vectors were distributed systemically but did not accumulate upon repeated injections. Although vector DNA was cleared from most other tissues within 60 days after the last injection, it persisted in skin at the site of injection and in draining lymph nodes. Evaluation of single-dose and repeated-dose toxicity of the vaccine candidate after i.d. administration to naive, non-infected mice did not reveal any safety concerns. LEISHDNAVAX was also well tolerated in Leishmania-infected mice. Taken together, our results substantiate a favorable safety profile of LEISHDNAVAX in both naive and infected animals and thus, support the initiation of clinical trials for both preventive and therapeutic applications of the vaccine.
Collapse
|
9
|
Espíndola MS, Frantz FG, Soares LS, Masson AP, Tefé-Silva C, Bitencourt CS, Oliveira SC, Rodrigues V, Ramos SG, Silva CL, Faccioli LH. Combined immunization using DNA-Sm14 and DNA-Hsp65 increases CD8+ memory T cells, reduces chronic pathology and decreases egg viability during Schistosoma mansoni infection. BMC Infect Dis 2014; 14:263. [PMID: 24886395 PMCID: PMC4031977 DOI: 10.1186/1471-2334-14-263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis is one of the most important neglected diseases found in developing countries and affects 249 million people worldwide. The development of an efficient vaccination strategy is essential for the control of this disease. Previous work showed partial protection induced by DNA-Sm14 against Schistosoma mansoni infection, whereas DNA-Hsp65 showed immunostimulatory properties against infectious diseases, autoimmune diseases, cancer and antifibrotic properties in an egg-induced granuloma model. METHODS C57BL/6 mice received 4 doses of DNA-Sm14 (100 μg/dose) and DNA-Hsp65 (100 μg/dose), simultaneously administrated, or DNA-Sm14 alone, once a week, during four weeks. Three groups were included: 1- Control (no immunization); 2- DNA-Sm14; 3- DNA-Sm14/DNA-Hsp65. Two weeks following last immunization, animals were challenged subcutaneously with 30 cercariae. Fifteen, 48 and 69 days after infection splenocytes were collected to evaluate the number of CD8+ memory T cells (CD44(high)CD62(low)) using flow cytometry. Forty-eight days after challenge adult worms were collected by portal veins perfusion and intestines were collected to analyze the intestinal egg viability. Histological, immunohistochemical and soluble quantification of collagen and α-SMA accumulation were performed on the liver. RESULTS In the current work, we tested a new vaccination strategy using DNA-Sm14 with DNA-Hsp65 to potentiate the protection against schistosomiasis. Combined vaccination increased the number of CD8+ memory T cells and decreased egg viability on the intestinal wall of infected mice. In addition, simultaneous vaccination with DNA-Sm14/DNA-Hsp65 reduced collagen and α-SMA accumulation during the chronic phase of granuloma formation. CONCLUSION Simultaneous vaccination with DNA-Sm14/DNA-Hsp65 showed an immunostimulatory potential and antifibrotic property that is associated with the reduction of tissue damage on Schistosoma mansoni experimental infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av, do Café s/n 14040-903 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
10
|
Labro MT. Immunomodulatory effects of antimicrobial agents. Part II: antiparasitic and antifungal agents. Expert Rev Anti Infect Ther 2014; 10:341-57. [DOI: 10.1586/eri.12.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Saljoughian N, Zahedifard F, Doroud D, Doustdari F, Vasei M, Papadopoulou B, Rafati S. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol 2013; 35:397-408. [DOI: 10.1111/pim.12042] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/23/2013] [Indexed: 02/03/2023]
Affiliation(s)
- N. Saljoughian
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - F. Zahedifard
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - D. Doroud
- Department of Quality Control; Research and Production Complex; Pasteur Institute of Iran; Tehran Iran
| | - F. Doustdari
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - M. Vasei
- Department of Pathology; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - B. Papadopoulou
- Research Centre in Infectious Disease; CHU de Quebec Research Centre (CHUL); Quebec QC Canada
- Department of Microbiology; Infectious Disease and Immunology; Faculty of Medicine; Laval University; Quebec QC Canada
| | - S. Rafati
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
12
|
von Gersdorff Jørgensen L, Sigh J, Kania PW, Holten-Andersen L, Buchmann K, Clark T, Rasmussen JS, Einer-Jensen K, Lorenzen N. Approaches towards DNA vaccination against a skin ciliate parasite in fish. PLoS One 2012; 7:e48129. [PMID: 23144852 PMCID: PMC3492342 DOI: 10.1371/journal.pone.0048129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) were immunized with plasmid DNA vaccine constructs encoding selected antigens from the parasite Ichthyophthirius multifiliis. Two immobilization antigens (I-ags) and one cysteine protease were tested as genetic vaccine antigen candidates. Antigenicity was evaluated by immunostaining of transfected fish cells using I-ag specific mono- and polyclonal antibodies. I. multifiliis specific antibody production, regulation of immune-relevant genes and/or protection in terms of parasite burden or mortality was measured to evaluate the induced immune response in vaccinated fish. Apart from intramuscular injection, needle free injection and gene gun delivery were tested as alternative administration techniques. For the I-ags the complement protein fragment C3d and the termini of the viral haemorrhagic septicaemia virus glyco(G)protein (VHSV G) were tested as opsonisation and cellular localisation mediators, respectively, while the full length viral G protein was tested as molecular adjuvant. Expression of I-ags in transfected fish cells was demonstrated for several constructs and by immunohistochemistry it was possible to detect expression of a secreted form of the Iag52B in the muscle cells of injected fish. Up-regulations of mRNA coding for IgM, MHC I, MHC II and TCR β, respectively, were observed in muscle tissue at the injection site in selected trials. In the spleen up-regulations were found for IFN-γ and IL-10. The highest up-regulations were seen following co-administration of I-ag and cysteine protease plasmid constructs. This correlated with a slight elevation of an I. multifiliis specific antibody response. However, in spite of detectable antigen expression and immune reactions, none of the tested vaccination strategies provided significant protection. This might suggest an insufficiency of DNA vaccination alone to trigger protective mechanisms against I. multifiliis or that other or additional parasite antigens are required for such a vaccine to be successful.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Aquaculture
- Cells, Cultured
- Ciliophora Infections/immunology
- Ciliophora Infections/prevention & control
- Ciliophora Infections/veterinary
- Fish Diseases/immunology
- Fish Diseases/prevention & control
- Gene Expression
- HEK293 Cells
- Humans
- Hymenostomatida/genetics
- Hymenostomatida/immunology
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Oncorhynchus mykiss/immunology
- Oncorhynchus mykiss/parasitology
- Parasite Load
- Skin Diseases, Parasitic/immunology
- Skin Diseases, Parasitic/prevention & control
- Skin Diseases, Parasitic/veterinary
- Spleen/immunology
- Spleen/metabolism
- Transfection
- Vaccination
- Vaccines, DNA/administration & dosage
Collapse
|
13
|
Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J Virol 2012; 86:9782-93. [PMID: 22761378 DOI: 10.1128/jvi.00694-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of strong CD8(+) T-cell responses against infectious diseases and cancer has remained a major challenge. Depending on the source of antigen and the infectious agent, priming of CD8(+) T cells requires direct and/or cross-presentation of antigenic peptides on major histocompatibility complex (MHC) class I molecules by professional antigen-presenting cells (APCs). However, both pathways show distinct preferences concerning antigen stability. Whereas direct presentation was shown to efficiently present peptides derived from rapidly degraded proteins, cross-presentation is dependent on long-lived antigen species. In this report, we analyzed the role of antigen stability on DNA vaccination and recombinant vaccinia virus (VV) infection using altered versions of the same antigen. The long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) can be targeted for degradation by N-terminal fusion to ubiquitin or, as we show here, to the ubiquitin-like modifier FAT10. Direct presentation by cells either transfected with NP-encoding plasmids or infected with recombinant VV in vitro was enhanced in the presence of short-lived antigens. In vivo, however, the highest induction of NP-specific CD8(+) T-cell responses was achieved in the presence of long-lived NP. Our experiments provide evidence that targeting antigens for proteasomal degradation does not improve the immunogenicity of DNA vaccines and recombinant VVs. Rather, it is the long-lived antigen that is superior for the efficient activation of MHC class I-restricted immune responses in vivo. Hence, our results suggest a dominant role for antigen cross-priming in DNA vaccination and recombinant VV infection.
Collapse
|
14
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
C-terminal domain deletion enhances the protective activity of cpa/cpb loaded solid lipid nanoparticles against Leishmania major in BALB/c mice. PLoS Negl Trop Dis 2011; 5:e1236. [PMID: 21765963 PMCID: PMC3134432 DOI: 10.1371/journal.pntd.0001236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/26/2011] [Indexed: 11/29/2022] Open
Abstract
Background We have demonstrated that vaccination with pDNA encoding cysteine proteinase Type II (CPA) and Type I (CPB) with its unusual C-terminal extension (CTE) can partially protect BALB/c mice against cutaneous leishmanial infection. Unfortunately, this protection is insufficient to completely control infection without booster injection. Furthermore, in developing vaccines for leishmaniasis, it is necessary to consider a proper adjuvant and/or delivery system to promote an antigen specific immune response. Solid lipid nanoparticles have found their way in drug delivery system development against intracellular infections and cancer, but not Leishmania DNA vaccination. Therefore, undefined effect of cationic solid lipid nanoparticles (cSLN) as an adjuvant in enhancing the immune response toward leishmanial antigens led us to refocus our vaccine development projects. Methodology/Principal Findings Three pDNAs encoding L. major cysteine proteinase type I and II (with or without CTE) were formulated by cSLN. BALB/c mice were immunized twice by 3-week interval, with cSLN-pcDNA-cpa/b, pcDNA-cpa/b, cSLN-pcDNA-cpa/b-CTE, pcDNA-cpa/b-CTE, cSLN, cSLN-pcDNA and PBS. Mice vaccinated with cSLN-pcDNA-cpa/b-CTE showed significantly higher levels of parasite inhibition related to protection with specific Th1 immune response development, compared to other groups. Parasite inhibition was determined by different techniques currently available in exploration vacciation efficacy, i.e., flowcytometry on footpad and lymph node, footpad caliper based measurements and imaging as well as lymph node microtitration assay. Among these techniques, lymph node flowcytometry was found to be the most rapid, sensitive and easily reproducible method for discrimination between the efficacy of vaccination strategies. Conclusions/Significance This report demonstrates cSLN's ability to boost immune response magnitude of cpa/cpb-CTE cocktail vaccination against leishmaniasis so that the average parasite inhibition percent could be increased significantly. Hence, cSLNs can be considered as suitable adjuvant and/or delivery systems for designing third generation cocktail vaccines. Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis with an annual incidence of approximately 2 million cases and is endemic in 88 countries, including Iran. CL's continued spread, along with rather ineffectual treatments and drug-resistant variants emergence has increased the need for advanced preventive strategies. We studied Type II cysteine proteinase (CPA) and Type I (CPB) with its C-terminal extension (CTE) as cocktail DNA vaccine against murine and canine leishmaniasis. However, adjuvants' success in enhancing immune responses to selected antigens led us to refocus our vaccine development programs. Herein, we discuss cationic solid lipid nanoparticles' (cSLN) ability to improve vaccine-induced protective efficacy against CL and subsequent lesion size and parasite load reduction in BALB/c mice. For this work, we evaluated five different conventional as well as novel parasite detection techniques, i.e., footpad imaging, footpad flowcytometry and lymph node flowcytometry for disease progression assessments. Vaccination with cSLN-cpa/cpb-CTE formulation showed highest parasite inhibition at 3-month post vaccination. Immunized mice showed reduced IL-5 level and significant IFN-ã increase, compared to control groups. We think our study represents a potential future and a major step forward in vaccine development against leishmaniasis.
Collapse
|
16
|
Delivery of a cocktail DNA vaccine encoding cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate protective immunity against Leishmania major infection. J Control Release 2011; 153:154-62. [DOI: 10.1016/j.jconrel.2011.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 01/16/2023]
|
17
|
In silico identification of novel protective VSG antigens expressed by Trypanosoma brucei and an effort for designing a highly immunogenic DNA vaccine using IL-12 as adjuvant. Microb Pathog 2011; 51:77-87. [PMID: 21349321 DOI: 10.1016/j.micpath.2011.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/24/2011] [Accepted: 01/24/2011] [Indexed: 11/22/2022]
Abstract
African trypanosomiasis continues to be a major health problem, with more adults dying from this disease world-wide. As the sequence diversity of Trypanosoma brucei is extreme, with VSGs having 15-25% identity with most other VSGs, hence it displays a huge diversity of adaptations and host specificities. Therefore the need for an improved vaccine has become an international priority. The highly conserved and specific epitopes acting as both CD8+ and CD4+ T-cell epitopes (FLINKKPAL and FTALCTLAA) were predicted from large bunch of VSGs of T. brucei. Besides, some other potential epitopes with very high affinity for MHC I and II molecules were also determined while taking consideration on the most common HLA in the general population which accounts for major ethnicities. The vaccine candidates were found to be effective even for non-african populations as predicted by population coverage analysis. Hence the migrating travelers acting as a spread means of the infection can probably also be treated successfully after injection of such a multiepitopic vaccine. Exploiting the immunoinformatics approaches, we designed a potential vaccine by using the consensus epitopic sequence of 388 VSG proteins of T. brucei and performed in silico cloning of multiepitopic antigenic DNA sequence in pBI-CMV1 vector. Moreover, various techniques like codon adaptation, CpG optimization, removal of self recognized epitopes, use of adjuvant and co-injection with plasmids expressing immune-stimulatory molecules were implemented to enhance the immunogenicity of the proposed in silico vaccine.
Collapse
|
18
|
Lança ASC, de Sousa KP, Atouguia J, Prazeres DMF, Monteiro GA, Silva MS. Trypanosoma brucei: immunisation with plasmid DNA encoding invariant surface glycoprotein gene is able to induce partial protection in experimental African trypanosomiasis. Exp Parasitol 2010; 127:18-24. [PMID: 20599996 DOI: 10.1016/j.exppara.2010.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/31/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Trypanosoma brucei is the etiological agent responsible for African trypanosomiasis, an infectious pathology which represents a serious problem of public health and economic losses in Sub-Saharan Africa. As one of the foremost neglected illnesses, few resources have been available for the development of vaccines or new drugs, in spite of the current therapeutical drugs showing little efficiency and high toxicity. Hence, it is obviously important to widen effective therapeutics and preventive strategies against African trypanosomiasis. In this work, we use the DNA vaccine model to evaluate immunisation effectiveness in mice challenged with Trypanosoma brucei brucei. We demonstrate that Balb/C mice immunised intramuscularly with a single dose of a DNA plasmid encoding a bloodstream-stage specific invariant surface glycoprotein (ISG) are partially protected from a lethal dose of T. b. brucei. Interestingly, the surviving animals show high levels of IgG2a anti-trypanosoma antibodies, suggesting that the Th1 response profile seems important for the induced mechanisms of immune protection.
Collapse
Affiliation(s)
- Andreia Sofia Cruz Lança
- Unidade de Ensino e Investigação de Clínica das Doenças Tropicais, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Portugal
| | | | | | | | | | | |
Collapse
|