1
|
Luo T, Patel JG, Zhang X, McBride JW. Antibody reactive immunomes of Ehrlichia chaffeensis and E. canis are diverse and defined by conformational antigenic determinants. Front Cell Infect Microbiol 2024; 13:1321291. [PMID: 38264730 PMCID: PMC10803646 DOI: 10.3389/fcimb.2023.1321291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
For decades, the defined antibody reactive proteins of Ehrlichia chaffeensis and E. canis were limited to a small group with linear antibody epitopes. Recently, our laboratory has utilized an immunomics-based approach to rapidly screen and identify undefined Ehrlichia chaffeensis and E. canis antigenic proteins and antibody epitopes. In this study, we analyzed the remaining portion (~50%) of the E. chaffeensis and E. canis proteomes (n = 444 and n = 405 proteins, respectively), that were not examined in previous studies, to define the complete immunomes of these important pathogens. Almost half of the E. chaffeensis proteins screened (196/444) reacted with antibodies in convalescent HME patient sera, while only 43 E. canis proteins reacted with CME dog sera. New major immunoreactive proteins were identified in E. chaffeensis (n = 7) and E. canis (n = 1), increasing the total number of E. chaffeensis (n = 14) and E. canis proteins (n = 18) that exhibited antibody reactivity comparable to well-defined major antigenic proteins (TRP120 and TRP19). All of the E. chaffeensis but only some E. canis major immunoreactive proteins contained major conformation-dependent antibody epitopes. The E. chaffeensis immunoreactive proteins were generally small (< 250 amino acids; ~27kDa) and the E. canis proteins were slightly larger (> 320 amino acids; ~35 kDa). The majority of these new Ehrlichia major immunoreactive proteins were predicted to be type I secreted effectors, some of which contained transmembrane domains. Characterization of the immunomes of E. chaffeensis and E. canis and understanding the host specific Ehrlichia immune responses will facilitate identification of protective antigens and define the biophysical epitope characteristics vital to effective vaccine development for the ehrlichioses.
Collapse
Affiliation(s)
- Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofeng Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
2
|
Teymournejad O, Sharma AK, Abdelwahed M, Kader M, Ahmed I, Elkafas H, Ismail N. Hepatocyte-specific regulation of autophagy and inflammasome activation via MyD88 during lethal Ehrlichia infection. Front Immunol 2023; 14:1212167. [PMID: 38022511 PMCID: PMC10662044 DOI: 10.3389/fimmu.2023.1212167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Hepatocytes play a crucial role in host response to infection. Ehrlichia is an obligate intracellular bacterium that causes potentially life-threatening human monocytic ehrlichiosis (HME) characterized by an initial liver injury followed by sepsis and multi-organ failure. We previously showed that infection with highly virulent Ehrlichia japonica (E. japonica) induces liver damage and fatal ehrlichiosis in mice via deleterious MyD88-dependent activation of CASP11 and inhibition of autophagy in macrophage. While macrophages are major target cells for Ehrlichia, the role of hepatocytes (HCs) in ehrlichiosis remains unclear. We investigated here the role of MyD88 signaling in HCs during infection with E. japonica using primary cells from wild-type (WT) and MyD88-/- mice, along with pharmacologic inhibitors of MyD88 in a murine HC cell line. Similar to macrophages, MyD88 signaling in infected HCs led to deleterious CASP11 activation, cleavage of Gasdermin D, secretion of high mobility group box 1, IL-6 production, and inflammatory cell death, while controlling bacterial replication. Unlike macrophages, MyD88 signaling in Ehrlichia-infected HCs attenuated CASP1 activation but activated CASP3. Mechanistically, active CASP1/canonical inflammasome pathway negatively regulated the activation of CASP3 in infected MyD88-/- HCs. Further, MyD88 promoted autophagy induction in HCs, which was surprisingly associated with the activation of the mammalian target of rapamycin complex 1 (mTORC1), a known negative regulator of autophagy. Pharmacologic blocking mTORC1 activation in E. japonica-infected WT, but not infected MyD88-/- HCs, resulted in significant induction of autophagy, suggesting that MyD88 promotes autophagy during Ehrlichia infection not only in an mTORC1-indpenedent manner, but also abrogates mTORC1-mediated inhibition of autophagy in HCs. In conclusion, this study demonstrates that hepatocyte-specific regulation of autophagy and inflammasome pathway via MyD88 is distinct than MyD88 signaling in macrophages during fatal ehrlichiosis. Understanding hepatocyte-specific signaling is critical for the development of new therapeutics against liver-targeting pathogens such as Ehrlichia.
Collapse
Affiliation(s)
- Omid Teymournejad
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mohammed Abdelwahed
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Hofstra School of Medicine, North Well Health, New York, NY, United States
| | - Muhamuda Kader
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ibrahim Ahmed
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Hoda Elkafas
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Bui DC, Luo T, McBride JW. Type 1 secretion system and effectors in Rickettsiales. Front Cell Infect Microbiol 2023; 13:1175688. [PMID: 37256108 PMCID: PMC10225607 DOI: 10.3389/fcimb.2023.1175688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Obligate intracellular bacteria in the order Rickettsiales are transmitted by arthropod vectors and cause life-threatening infections in humans and animals. While both type 1 and type 4 secretion systems (T1SS and T4SS) have been identified in this group, the most extensive studies of Rickettsiales T1SS and associated effectors have been performed in Ehrlichia. These studies have uncovered important roles for the T1SS effectors in pathobiology and immunity. To evade innate immune responses and promote intracellular survival, Ehrlichia and other related obligate pathogens secrete multiple T1SS effectors which interact with a diverse network of host targets associated with essential cellular processes. T1SS effectors have multiple functional activities during infection including acting as nucleomodulins and ligand mimetics that activate evolutionarily conserved cellular signaling pathways. In Ehrlichia, an array of newly defined major immunoreactive proteins have been identified that are predicted as T1SS substrates and have conformation-dependent antibody epitopes. These findings highlight the underappreciated and largely uncharacterized roles of T1SS effector proteins in pathobiology and immunity. This review summarizes current knowledge regarding roles of T1SS effectors in Rickettsiales members during infection and explores newly identified immunoreactive proteins as potential T1SS substrates and targets of a protective host immune response.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
Sabzi S, Shahbazi S, Noori Goodarzi N, Haririzadeh Jouriani F, Habibi M, Bolourchi N, Mirzaie A, Badmasti F. Genome-Wide Subtraction Analysis and Reverse Vaccinology to Detect Novel Drug Targets and Potential Vaccine Candidates Against Ehrlichia chaffeensis. Appl Biochem Biotechnol 2023; 195:107-124. [PMID: 36053401 PMCID: PMC9437403 DOI: 10.1007/s12010-022-04116-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/17/2023]
Abstract
Human monocytotropic ehrlichiosis is an emerging tick-borne infection caused by the obligate intracellular pathogen, Ehrlichia chaffeensis. The non-specific symptoms can range from a self-limiting fever to a fatal septic-like syndrome and may be misdiagnosed. The limited treatment choices including doxycycline are effective only in the initiation phase of the infection. It seems that novel therapeutic targets and new vaccine strategies could be effective to control this pathogen. This study is comprised of two major phases. First, the common proteins retrieved through subtractive analysis and potential drug targets were evaluated by subcellular localization, homology prediction, metabolic pathways, druggability, essentiality, protein-protein interaction networks, and protein data bank availability. In the second phase, surface-exposed proteins were assessed based on antigenicity, allergenicity, physiochemical properties, B cell and T cell epitopes, conserved domains, and protein-protein interaction networks. A multi-epitope vaccine was designed and characterized using molecular dockings and immune simulation analysis. Six proteins including WP_011452818.1, WP_011452723.1, WP_006010413.1, WP_006010278.1, WP_011452938.1, and WP_006010644.1 were detected. They belong to unique metabolic pathways of E. chaffeensis that are considered as new essential drug targets. Based on the reverse vaccinology, WP_011452702.1, WP_044193405.1, WP_044170604.1, and WP_006010191.1 proteins were potential vaccine candidates. Finally, four B cell epitopes, including SINNQDRNC, FESVSSYNI, SGKKEISVQSN, and QSSAKRKST, were used to generate the multi-epitope vaccine based on LCL platform. The vaccine showed strong interactions with toll-like receptors and acceptable immune-reactivity by immune simulation analysis. The findings of this study may represent a turning point in developing an effective drug and vaccine against E. chaffeensis. However, further experimental analyses have remained.
Collapse
Affiliation(s)
- Samira Sabzi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran ,Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran ,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Effect of GP19 Peptide Hyperimmune Antiserum on Activated Macrophage during Ehrlichia canis Infection in Canine Macrophage-like Cells. Animals (Basel) 2021; 11:ani11082310. [PMID: 34438767 PMCID: PMC8388390 DOI: 10.3390/ani11082310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
In terms of its veterinary importance, vaccine development against Ehrlichia canis is needed. However, the effect of developing vaccines on humoral immune response against E. canis infection is still unknown. Novel GP194-43 was synthesized according to E. canis GP19 epitope prediction. To restrict any loss and/or illness in the host animal, rabbits were used in this study to produce GP194-43 hyperimmune sera. The effect of GP194-43 hyperimmune sera on neutralization was examined in vitro by determining the inhibition of E. canis infection of the macrophage-like cell line (DH82) in the presence of the sera. Four groups of DH82 cells received differing treatments. These included E. canis experimentally infected DH82 cells, E. canis-infected DH82 cells with control rabbit serum (untreated group), E. canis-infected DH82 cells with GP194-43 rabbit antiserum (treated group) and uninfected cells (negative control group), respectively. The treated group developed a decrease (p < 0.01) in the percentage of E. canis infected cells after 3 days post-infection at 48.57 ± 1.28. In addition, real-time PCR analyses of cytokine mRNA expression involved with the macrophage, humoral, and cellular immune responses were conducted. The findings revealed an upregulated expression of IFNG in the treated group during the infection. This study demonstrated neutralization in the GP194-43 peptide hyperimmune sera of immunized rabbits. Notably, IFN-γ production could be effectively promoted in canine macrophages in relation to the activation of macrophages and adaptive immune responses. The results of this study indicate the potential for the use of this immunogen in further investigations involving immunized and infected dogs as E. canis host species.
Collapse
|
6
|
Immunoreactive Protein Repertoires of Ehrlichia chaffeensis and E. canis Reveal the Dominance of Hypothetical Proteins and Conformation-dependent Antibody Epitopes. Infect Immun 2021; 89:e0022421. [PMID: 34370510 DOI: 10.1128/iai.00224-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunomes of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) have recently be revised to include immunodominant hypothetical proteins with conformational antibody epitopes. In this study, we examined 216 E. ch. and 190 E. ca. highly antigenic proteins according to ANTIGENpro and also performed a genome-wide hypothetical protein analysis (E. ch. n=104; E. ca. n=124) for immunoreactivity. Using cell-free protein expression and immunoanalysis, 118 E. ch. and 39 E. ca. proteins reacted with sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 22 E. ch. and 18 E. ca. proteins consistently and strongly reacted with a panel of patient or canine sera. A subset of E. ch. (n=18) and E. ca. (n=9) proteins were identified as immunodominant. Consistent with our previous study, most proteins were classified as hypothetical and the antibody epitopes exhibited complete or partial conformation-dependence. The majority (28/40; 70%) of E. ch. and E. ca. proteins contained transmembrane domains and 19 (48%) were predicted to be secreted effectors. The antigenic repertoires of E. ch. and E. ca. were mostly diverse and suggest that the immunomes of these closely related ehrlichiae are dominated by species-specific conformational antibody epitopes. This study reveals a significant group of previously undefined E. ch. and E. ca. antigens and reaffirms the importance of conformation-dependent epitopes as targets of anti-Ehrlichia immune responses. These findings substantially expand our understanding of host-Ehrlichia immune responses, advance efforts to define the molecular features of protective proteins and improve prospects for effective vaccines for the ehrlichioses.
Collapse
|
7
|
Macrophage Proteome Analysis at Different Stages of Mycobacterium avium Subspecies paratuberculosis Infection Reveals a Mechanism of Pathogen Dissemination. Proteomes 2021; 9:proteomes9020020. [PMID: 33946162 PMCID: PMC8162536 DOI: 10.3390/proteomes9020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Johne’s disease is a chronic and usually fatal enteric infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP) and is responsible for hundreds of millions of dollars in losses for the agricultural industry. Natural infection typically begins with bacterial uptake and translocation through the epithelium of the small intestine, followed by ingestion by tissue macrophages and dissemination via the lymphatic or blood system throughout the body. To gain insights into the host responses and adaptation of MAP within phagocytic cells, we utilized the previously developed cell culture passage model, and mass spectrometric-based quantitative proteomic approach. Using the cell culture system, which mimics an in vivo interaction of MAP with intestinal epithelium and tissue macrophages, bacteria were passed through the bovine epithelial cells and, subsequently, used for macrophage infection (termed indirect infection), while uninfected cells and macrophage infection initiated with the culture grown bacteria (termed direct infection) served as controls. Approximately 3900 proteins were identified across all studied groups. The comparison within the subset of proteins that showed synthesis for more than two-fold in the direct infection over the uninfected control revealed an enrichment for the pro-inflammatory pathways such as the NF-κB and cytokine/chemokine signaling, positive regulation of defense response, cell activation involved in the immune response and adaptive immune system. While these responses were absent in the indirect infection, cellular pathways such as cell cycle, healing, regulation of cell adhesion, ensemble of core extracellular matrix proteins, cell surface integrins and proteins mediating the integrin signaling were remarkably high within the indirect infection. In addition to global analysis of the macrophage proteome, we further validated the proteomics data and confirmed that MAP passage through epithelial cells modulates the expression and signaling of integrins in phagocytes. In this study, we demonstrate that predominant expression of integrins in the indirectly infected macrophages allows phagocytic cells to initiate stronger binding and efficient translocation through the endothelial cells, suggesting the important role of integrins in the spread of MAP infection.
Collapse
|
8
|
Ehrlichia chaffeensis and E. canis hypothetical protein immunoanalysis reveals small secreted immunodominant proteins and conformation-dependent antibody epitopes. NPJ Vaccines 2020; 5:85. [PMID: 32963815 PMCID: PMC7486380 DOI: 10.1038/s41541-020-00231-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Immunomolecular characterization of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) has defined protein orthologs, including tandem repeat proteins (TRPs) that have immunodominant linear antibody epitopes. In this study, we combined bioinformatic analysis and cell-free protein expression to identify undiscovered immunoreactive E. ch. and E. ca. hypothetical proteins. Antigenicity of the E. ch. and E. ca. ORFeomes (n = 1105 and n = 925, respectively) was analyzed by the sequence-based prediction model ANTIGENpro, and we identified ~250 ORFs in each respective ORFeome as highly antigenic. The hypothetical proteins (E. ch. n = 93 and E. ca. n = 98) present in the top 250 antigenic ORFs were further investigated in this study. By ELISA, 46 E. ch. and 30 E. ca. IVTT-expressed hypothetical proteins reacted with antibodies in sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 15 E. ch. and 16 E. ca. proteins consistently reacted with a panel of sera from patients or dogs, including many that revealed the immunoreactivity of “gold standard” TRPs. Antibody epitopes in most (>70%) of these proteins exhibited partial or complete conformation-dependence. The majority (23/31; 74%) of the major immunoreactive proteins identified were small (≤250 aa), and 20/31 (65%) were predicted to be secreted effectors. Unlike the strong linear antibody epitopes previously identified in TRP and OMP orthologs, there were contrasting differences in the E. ch. and E. ca. antigenic repertoires, epitopes and ortholog immunoreactivity. This study reveals numerous previously undefined immunodominant and subdominant antigens, and illustrates the breadth, complexity, and diversity of immunoreactive proteins/epitopes in Ehrlichia.
Collapse
|
9
|
McGill JL, Wang Y, Ganta CK, Boorgula GDY, Ganta RR. Antigen-Specific CD4 +CD8 + Double-Positive T Cells Are Increased in the Blood and Spleen During Ehrlichia chaffeensis Infection in the Canine Host. Front Immunol 2018; 9:1585. [PMID: 30050533 PMCID: PMC6050357 DOI: 10.3389/fimmu.2018.01585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium belonging to the order, Rickettsiales and is a frequent cause of severe and fatal tick-borne infection in people in North America. The reservoir host for E. chaffeensis is the white-tailed deer, while humans and dogs are regarded as common incidental hosts. In dogs, we and others have shown that E. chaffeensis establishes a chronic infection that persists for several weeks to months, while promoting the development of Th1 and Th17 cellular responses and pathogen-specific humoral immunity. We demonstrate here that vaccination with a live, attenuated clone of E. chaffeensis bearing a targeted mutation in the Ech_0230 gene neither promotes the development of long-lived cellular or humoral immunity, nor confers protection against secondary wild-type E. chaffeensis challenge. In dogs, a population of mature CD4+CD8+ double-positive (DP) T cells exists in the periphery that shares similarities with the DP T cell populations that have been described in humans and swine. Little is known about the function of these cells, particularly in the context of infectious diseases. Here, we demonstrate that canine DP T cells expand significantly in response to E. chaffeensis infection. Using in vitro antigen recall assays, we further demonstrate that canine DP T cells undergo clonal expansion, produce IFNγ and IL-17, and upregulate expression of granzyme B and granulysin. Together, our results demonstrate that DP T cells accumulate in the host during E. chaffeensis infection, and suggest that alternative lymphocyte populations may participate in the immune response to tick-borne infections in the incidental host.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chanran K. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Gunavanthi D. Y. Boorgula
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
10
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne infectious diseases caused by various members from the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis is the major etiologic agent of human monocytotropic ehrlichiosis (HME), while Anaplasma phagocytophilum is the major cause of human granulocytic anaplasmosis (HGA). The clinical manifestations of HME and HGA ranges from subclinical to potentially life-threatening diseases associated with multi-organ failure. Macrophages and neutrophils are the major target cells for Ehrlichia and Anaplasma, respectively. The threat to public health is increasing with newly emerging ehrlichial and anaplasma agents, yet vaccines for human ehrlichioses and anaplasmosis are not available, and therapeutic options are limited. This article reviews recent advances in the understanding of HME and HGA.
Collapse
|
11
|
McGill JL, Nair ADS, Cheng C, Rusk RA, Jaworski DC, Ganta RR. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 2016; 11:e0148229. [PMID: 26841025 PMCID: PMC4739596 DOI: 10.1371/journal.pone.0148229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023] Open
Abstract
Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.
Collapse
Affiliation(s)
- Jodi L. McGill
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Arathy D. S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Rachel A. Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
12
|
Attenuated Mutants of Ehrlichia chaffeensis Induce Protection against Wild-Type Infection Challenge in the Reservoir Host and in an Incidental Host. Infect Immun 2015; 83:2827-35. [PMID: 25916990 DOI: 10.1128/iai.00487-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/24/2015] [Indexed: 02/05/2023] Open
Abstract
Ehrlichia chaffeensis, a tick-borne rickettsial organism, causes the disease human monocytic ehrlichiosis. The pathogen also causes disease in several other vertebrates, including dogs and deer. In this study, we assessed two clonally purified E. chaffeensis mutants with insertions within the genes Ech_0379 and Ech_0660 as vaccine candidates in deer and dogs. Infection with the Ech_0379 mutant and challenge with wild-type E. chaffeensis 1 month following inoculation with the mutant resulted in the reduced presence of the organism in blood compared to the presence of wild-type infection in both deer and dogs. The Ech_0660 mutant infection resulted in its rapid clearance from the bloodstream. The wild-type infection challenge following Ech_0660 mutant inoculation also caused the pathogen's clearance from blood and tissue samples as assessed at the end of the study. The Ech_0379 mutant-infected and -challenged animals also remained positive for the organism in tissue samples in deer but not in dogs. This is the first study that documents that insertion mutations in E. chaffeensis that cause attenuated growth confer protection against wild-type infection challenge. This study is important in developing vaccines to protect animals and people against Ehrlichia species infections.
Collapse
|
13
|
Thomas S, Luxon BA. Vaccines based on structure-based design provide protection against infectious diseases. Expert Rev Vaccines 2014; 12:1301-11. [DOI: 10.1586/14760584.2013.840092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Thirumalapura NR, Crocquet-Valdes PA, Saito TB, Thomas S, McBride JW, Walker DH. Recombinant Ehrlichia P29 protein induces a protective immune response in a mouse model of ehrlichiosis. Vaccine 2013; 31:5960-7. [PMID: 24144475 DOI: 10.1016/j.vaccine.2013.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 01/26/2023]
Abstract
Ehrlichioses are emerging tick-borne bacterial diseases of humans and animals for which no vaccines are available. The diseases are caused by obligately intracellular bacteria belonging to the genus Ehrlichia. Several immunoreactive proteins of ehrlichiae have been identified based on their reactivity with immune sera from human patients and animals. These include the major outer membrane proteins, ankyrin repeat proteins and tandem repeat proteins (TRP). Polyclonal antibodies directed against the tandem repeats (TRs) of Ehrlichia chaffeensis TRP32, TRP47 and TRP120 have been shown to provide protection in mice. In the present study, we evaluated E. muris P29, which is the ortholog of E. chaffeensis TRP47 and E. canis TRP36, as a subunit vaccine in a mouse model of ehrlichiosis. Our study indicated that unlike E. chaffeensis TRP47 and E. canis TRP36, orthologs of E. muris (P29) and E. muris-like agent (EMLA) do not contain tandem repeats. Immunization of mice with recombinant E. muris P29 induced significant protection against a challenge infection. The protection induced by E. muris P29 was associated with induction of strong antibody responses. In contrast to development of P29-specific IgG antibodies following immunization, development of P29-specific IgG antibodies, but not IgM antibodies, was impaired during persistent E. muris infection. Furthermore, our study indicated that CD4+ T cells target P29 during E. muris infection and differentiate into IFN-γ-producing Th1 effector/memory cells. In conclusion, our study indicated that orthologs of E. muris P29 showed considerable variation in the central tandem repeat region among different species, induction of P29-specific IgG antibody response was impaired during persistent E. muris infection, and rP29 induced protective immune responses.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- CD4-Positive T-Lymphocytes/immunology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Disease Models, Animal
- Ehrlichia/genetics
- Ehrlichia/immunology
- Ehrlichiosis/immunology
- Ehrlichiosis/prevention & control
- Female
- Immunologic Memory
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Sequence Analysis, DNA
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Nagaraja R Thirumalapura
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-0609, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| | | | | | | | | | | |
Collapse
|
15
|
Alves RN, Rieck SE, Ueira-Vieira C, Labruna MB, Beletti ME. Isolation, in vitro propagation, genetic analysis, and immunogenic characterization of an Ehrlichia canis strain from southeastern Brazil. J Vet Sci 2013; 15:241-8. [PMID: 24136211 PMCID: PMC4087226 DOI: 10.4142/jvs.2014.15.2.241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/14/2013] [Indexed: 11/23/2022] Open
Abstract
Amplification of the 16S rRNA gene from a blood sample obtained from a dog in southeastern Brazil was used to confirm a naturally acquired Ehrlichia (E.) canis infection. Following isolation and culturing of the new bacterial strain called Uberlândia, partial sequences of the dsb and p28 genes were obtained. The dsb partial sequence of the novel strain was 100% similar to dsb gene sequences of E. canis obtained from different geographic areas around the world. Conversely, the p28 partial sequence for the E. canis Uberlândia strain differed at several nucleotides from other sequences available in GenBank. To confirm the antigenic profile of the Uberlândia strain, an indirect immunofluorescence assay against E. canis antigens was performed using dog sera collected from two different areas in Brazil (Uberlândia and São Paulo). The results suggest that both antigens were able to identify animals seropositive for E. canis in Brazil since these Brazilian strains appear to be highly conserved.
Collapse
|
16
|
Santos LGFD, Melo ALT, Moraes-Filho J, Witter R, Labruna MB, Aguiar DMD. Molecular detection of Ehrlichia canisin dogs from the Pantanal of Mato Grosso State, Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2013; 22:114-8. [DOI: 10.1590/s1984-29612013005000013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/01/2012] [Indexed: 11/22/2022]
Abstract
The present study evaluated the presence of EhrlichiaDNA in the blood samples of 320 dogs from the urban and rural areas of the municipality of Poconé, Pantanal region, Mato Grosso state, by Polymerase Chain Reaction (PCR), targeting the ehrlichial dsbgene. Risk factors for infection in dogs were also evaluated. Forty-eight (15%, 95% CI: 11.4-19.5%) dogs were positive: 25 (15.6%, 95% CI: 10.4-22.2%) from the urban area and 23 (14.4%, 95% CI: 9.3-20.8%) from the rural area (P > 0.05). Partial DNA sequence obtained from PCR products of 18 samples from the urban area and 16 samples from the rural area were 100% identical to E. canis from Brazil and the USA. This study reports the first E. canis molecular detection in dogs from the northern Pantanal region.
Collapse
Affiliation(s)
| | - Andréia Lima Tomé Melo
- Universidade Federal de Mato Grosso – UFMT, Brasil; Universidade Federal de Mato Grosso – UFMT, Brasil
| | | | - Rute Witter
- Universidade Federal de Mato Grosso – UFMT, Brasil
| | | | | |
Collapse
|
17
|
Galanakis E, Bitsori M. Rickettsioses in children: a clinical approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 719:145-62. [PMID: 22125042 DOI: 10.1007/978-1-4614-0204-6_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
18
|
Thomas S, Thirumalapura NR, Crocquet-Valdes PA, Luxon BA, Walker DH. Structure-based vaccines provide protection in a mouse model of ehrlichiosis. PLoS One 2011; 6:e27981. [PMID: 22114733 PMCID: PMC3219711 DOI: 10.1371/journal.pone.0027981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent advances in bioinformatics have made it possible to predict the B cell and T cell epitopes of antigenic proteins. This has led to design of peptide based vaccines that are more specific, safe, and easy to produce. The obligately intracellular gram negative bacteria Ehrlichia cause ehrlichioses in humans and animals. As yet there are no vaccines to protect against Ehrlichia infection. METHODOLOGY/PRINCIPAL FINDINGS We applied the principle of structural vaccinology to design peptides to the epitopes of Ehrlichia muris outer membrane P28-19 (OMP-1/P28) and Ehrlichia Heat shock protein 60 (Hsp60/GroEL) antigenic proteins. Both P28-19 and Ehrlichia Hsp60 peptides reacted with polyclonal antibodies against E. canis and E. chaffeensis and could be used as a diagnostic tool for ehrlichiosis. In addition, we demonstrated that mice vaccinated with Ehrlichia P28-19 and Hsp60 peptides and later challenged with E. muris were protected against the pathogen. CONCLUSIONS/SIGNIFICANCE Our results demonstrate the power of structural vaccines and could be a new strategy in the development of vaccines to provide protection against pathogenic microorganisms.
Collapse
Affiliation(s)
- Sunil Thomas
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nagaraja R. Thirumalapura
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Bruce A. Luxon
- Institute of Human Infections and Immunity, Institute for Translational Science, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
19
|
Molecular and cellular pathobiology of Ehrlichia infection: targets for new therapeutics and immunomodulation strategies. Expert Rev Mol Med 2011; 13:e3. [PMID: 21276277 DOI: 10.1017/s1462399410001730] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between Ehrlichia and the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.
Collapse
|