1
|
Battaglia S, Nazzi C, Di Fazio C, Borgomaneri S. The role of pre-supplementary motor cortex in action control with emotional stimuli: A repetitive transcranial magnetic stimulation study. Ann N Y Acad Sci 2024; 1536:151-166. [PMID: 38751225 DOI: 10.1111/nyas.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Swiftly halting ongoing motor actions is essential to react to unforeseen and potentially perilous circumstances. However, the neural bases subtending the complex interplay between emotions and motor control have been scarcely investigated. Here, we used an emotional stop signal task (SST) to investigate whether specific neural circuits engaged by action suppression are differently modulated by emotional signals with respect to neutral ones. Participants performed an SST before and after the administration of one session of repetitive transcranial magnetic stimulation (rTMS) over the pre-supplementary motor cortex (pre-SMA), the right inferior frontal gyrus (rIFG), and the left primary motor cortex (lM1). Results show that rTMS over the pre-SMA improved the ability to inhibit prepotent action (i.e., better action control) when emotional stimuli were presented. In contrast, action control in a neutral context was fostered by rTMS over the rIFG. No changes were observed after lM1 stimulation. Intriguingly, individuals with higher impulsivity traits exhibited enhanced motor control when facing neutral stimuli following rIFG stimulation. These results further our understanding of the interplay between emotions and motor functions, shedding light on the selective modulation of neural pathways underpinning these processes.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Claudio Nazzi
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Sara Borgomaneri
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| |
Collapse
|
2
|
Dai J, Xiao Y, Chen G, Gu Z, Xu K. Anodal transcranial direct current stimulation enhances response inhibition and attention allocation in fencers. PeerJ 2024; 12:e17288. [PMID: 38699193 PMCID: PMC11064870 DOI: 10.7717/peerj.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Background The aim of this study is to investigate the acute effects of anodal transcranial direct current stimulation (tDCS) on reaction time, response inhibition and attention in fencers. Methods Sixteen professional female fencers were recruited, and subjected to anodal tDCS and sham stimulation in the primary motor area (M1) one week apart in a randomized, crossover, single-blind design. A two-factor analysis of variance with repeated measures was used to analyze the effects of stimulation conditions (anodal stimulation, sham stimulation) and time (pre-stimulation, post-stimulation) on reaction time, response inhibition, and attention in fencers. Results The study found a significant improvement in response inhibition and attention allocation from pre-stimulation to post-stimulation following anodal tDCS but not after sham stimulation. There was no statistically significant improvement in reaction time and selective attention. Conclusions A single session of anodal tDCS could improve response inhibition, attention allocation in female fencers. This shows that tDCS has potential to improve aspects of an athlete's cognitive performance, although we do not know if such improvements would transfer to improved performance in competition. However, more studies involving all genders, large samples, and different sports groups are needed in the future to further validate the effect of tDCS in improving the cognitive performance of athletes.
Collapse
Affiliation(s)
- Jiansong Dai
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Yang Xiao
- Department of Graduate, Nanjing Sport Institute, Nanjing, China
| | - Gangrui Chen
- Department of Sport Research, Nanjing Sport Institute, Nanjing, China
| | - Zhongke Gu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Kai Xu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| |
Collapse
|
3
|
Wei JN, Zhang MK, Wang Z, Liu Y, Zhang J. Table tennis experience enhances motor control in older adults: Insights into sensorimotor-related cortical connectivity. Int J Clin Health Psychol 2024; 24:100464. [PMID: 38660391 PMCID: PMC11039312 DOI: 10.1016/j.ijchp.2024.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Background Motor control declines with age and requires effective connectivity between the sensorimotor cortex and the primary motor cortex (M1). Despite research indicating that physical exercise can improve motor control in older individuals the effect of physical exercise on neural connectivity in older adults remains to be elucidated. Methods Older adults with experience in table tennis and fit aerobics and individuals without such experience for comparison were recruited for the study. Differences in motor control were assessed using the stop-signal task. The impact of exercise experience on DLPFC-M1 and pre-SMA-M1 neural connectivity was assessed with transcranial magnetic stimulation. Varied time intervals (short and long term) and stimulus intensities (subthreshold and suprathreshold) were used to explore neural connectivity across pathways. Results The present study showed that behavioral iexpression of the table tennis group was significantly better than the other two groups;The facilitatory regulation of preSMA-M1 in all groups is negatively correlated with SSRT. Regulatory efficiency was highest in the table tennis group. Only the neural network regulatory ability of the Table Tennis group showed a negative correlation with SSRT; Inhibitory regulation of DLPFC-M1 was positively correlated with SSRT; this effect was most robust in the table tennis group. Conclusion The preliminary findings of this study suggest that table tennis exercise may enhance the motor system regulated by neural networks and stabilize inhibitory regulation of DLPFC-M1, thereby affecting motor control in older adults.
Collapse
Affiliation(s)
- Jia-Ning Wei
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Ming-Kai Zhang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Zhen Wang
- School of Sport and Health Science, Xi'an Physical Education University, Xi'an, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Narmashiri A, Akbari F. The Effects of Transcranial Direct Current Stimulation (tDCS) on the Cognitive Functions: A Systematic Review and Meta-analysis. Neuropsychol Rev 2023:10.1007/s11065-023-09627-x. [PMID: 38060075 DOI: 10.1007/s11065-023-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Previous studies have investigated the effect of transcranial direct current stimulation (tDCS) on cognitive functions. However, these studies reported inconsistent results due to differences in experiment design, measurements, and stimulation parameters. Nonetheless, there is a lack of meta-analyses and review studies on tDCS and its impact on cognitive functions, including working memory, inhibition, flexibility, and theory of mind. We performed a systematic review and meta-analysis of tDCS studies published from the earliest available data up to October 2021, including studies reporting the effects of tDCS on cognitive functions in human populations. Therefore, these systematic review and meta-analysis aim to comprehensively analyze the effects of anodal and cathodal tDCS on cognitive functions by investigating 69 articles with a total of 5545 participants. Our study reveals significant anodal tDCS effects on various cognitive functions. Specifically, we observed improvements in working memory reaction time (RT), inhibition RT, flexibility RT, theory of mind RT, working memory accuracy, theory of mind accuracy and flexibility accuracy. Furthermore, our findings demonstrate noteworthy cathodal tDCS effects, enhancing working memory accuracy, inhibition accuracy, flexibility RT, flexibility accuracy, theory of mind RT, and theory of mind accuracy. Notably, regarding the influence of stimulation parameters of tDCS on cognitive functions, the results indicated significant differences across various aspects, including the timing of stimulation (online vs. offline studies), population type (clinical vs. healthy studies), stimulation duration (< 15 min vs. > 15 min), electrical current intensities (1-1.5 m.A vs. > 1.5 m.A), stimulation sites (right frontal vs. left frontal studies), age groups (young vs. older studies), and different cognitive tasks in each cognitive functioning aspect. In conclusion, our results demonstrate that tDCS can effectively enhance cognitive task performance, offering valuable insights into the potential benefits of this method for cognitive improvement.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Electrical Engineering Department, Bio-Intelligence Research Unit, Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
5
|
Meng Q, Zhu Y, Yuan Y, Ni R, Yang L, Liu J, Bu J. Dual-site beta tACS over rIFG and M1 enhances response inhibition: A parallel multiple control and replication study. Int J Clin Health Psychol 2023; 23:100411. [PMID: 37731603 PMCID: PMC10507441 DOI: 10.1016/j.ijchp.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Response inhibition is a core component of cognitive control. Past electrophysiology and neuroimaging studies have identified beta oscillations and inhibitory control cortical regions correlated with response inhibition, including the right inferior frontal gyrus (rIFG) and primary motor cortex (M1). Hence, increasing beta activity in multiple brain regions is a potential way to enhance response inhibition. Here, a novel dual-site transcranial alternating current stimulation (tACS) method was used to modulate beta activity over the rIFG-M1 network in a sample of 115 (excluding 2 participants) with multiple control groups and a replicated experimental design. In Experiment 1, 70 healthy participants were randomly assigned to three dual-site beta-tACS groups, including in-phase, anti-phase or sham stimulation. During and after stimulation, participants were required to complete the stop-signal task, and electroencephalography (EEG) was collected before and after stimulation. The Barratt Impulsiveness Scale was completed before the experiment to evaluate participants' impulsiveness. In addition, we conducted an active control experiment with a sample size of 20 to exclude the potential effects of the dual-site tACS "return" electrode. To validate the behavioural findings of Experiment 1, 25 healthy participants took part in Experiment 2 and were randomized into two groups, including in-phase and sham stimulation groups. We found that compared to the sham group, in-phase but not anti-phase beta-tACS significantly improved both response inhibition performance and beta synchronization of the inhibitory control network in Experiment 1. Furthermore, the increased beta synchronization was correlated with enhanced response inhibition. In an independent sample of Experiment 2, the enhanced response inhibition performance observed in the in-phase group was replicated. After combining the data from the above two experiments, the time dynamics analysis revealed that the in-phase beta-tACS effect occurred in the post-stimulation period but not the stimulation period. The state-dependence analysis showed that individuals with poorer baseline response inhibition or higher attentional impulsiveness had greater improvement in response inhibition for the in-phase group. These findings strongly support that response inhibition in healthy adults can be improved by in-phase dual-site beta-tACS of the rIFG-M1 network, and provide a new potential treatment targets of synchronized cortical network activity for patients with clinically deficient response inhibition.
Collapse
Affiliation(s)
- Qiujian Meng
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ying Zhu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ye Yuan
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Rui Ni
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Li Yang
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jiafang Liu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Junjie Bu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Abdollahzade Z, Hadian MR, Khanmohammadi R, Talebian S. Efficacy of stretching exercises versus transcranial direct current stimulation (tDCS) on task performance, kinematic and electroencephalography (EEG) spectrum in subjects with slump posture: a study protocol. Trials 2023; 24:351. [PMID: 37221565 DOI: 10.1186/s13063-023-07359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Slump sitting is a common posture in workplaces. There is limited evidence that poor posture impacts the mental state. This study aims to investigate whether slump posture results in more mental fatigue during computer typing, compared with normal posture and also to compare the effectiveness of stretching exercises with tDCS in fatigue monitoring. METHODS The sample size for this study is set at 36 participants with slump posture and 36 participants with normal posture. In the first step, to find out the differences between normal and poor posture, they will be asked to perform the typewriting task for 60 min. During the first and last 3 min of typing, mental fatigue as the primary outcome using EEG signals and further measures including kinematic behavior of neck, visual analog fatigue scale, and musculoskeletal discomfort will be assessed. Post-experiment task performance will be calculated based on typing speed and typing errors. In the next step, to compare the effect of tDCS and stretching exercises on the outcome measures, the slump posture group will receive these interventions in two separate sessions before the typing task. DISCUSSION With the assumption of showing significant differences in terms of outcome measures between slump and normal posture groups and also by showing the possible changes of the measures, by using either tDCS as a central modality or stretching exercises as a peripheral modality; the findings may provide evidence to indicate that poor posture has adverse effect on mental state and to introduce the effective method to overcome mental fatigue and promote work productivity. TRIAL REGISTRATION Registered on the Iranian Registry of Clinical Trials on 21 September 2022, IRCT Identifier: IRCT20161026030516N2.
Collapse
Affiliation(s)
- Zahra Abdollahzade
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hadian
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roya Khanmohammadi
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebian
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Guo Z, Qiu R, Qiu H, Lu H, Zhu X. Long-term effects of repeated multitarget high-definition transcranial direct current stimulation combined with cognitive training on response inhibition gains. Front Neurosci 2023; 17:1107116. [PMID: 36968503 PMCID: PMC10033537 DOI: 10.3389/fnins.2023.1107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundFew studies have investigated the effects of repeated sessions of transcranial direct current stimulation (tDCS) combined with concurrent cognitive training on improving response inhibition, and the findings have been heterogeneous in the limited research. This study investigated the long-lasting and transfer effects of 10 consecutive sessions of multitarget anodal HD-tDCS combined with concurrent cognitive training on improving response inhibition compared with multitarget stimulation or training alone.MethodsNinety-four healthy university students aged 18–25 were randomly assigned to undergo different interventions, including real stimulation combined with stop-signal task (SST) training, real stimulation, sham stimulation combined with SST training, and sham stimulation. Each intervention lasted 20 min daily for 10 consecutive days, and the stimulation protocol targeted right inferior frontal gyrus (rIFG) and pre-supplementary motor area (pre-SMA) simultaneously with a total current intensity of 2.5 mA. Performance on SST and possible transfer effects to Stroop task, attention network test, and N-back task were measured before and 1 day and 1 month after completing the intervention course.ResultsThe main findings showed that the combined protocol and the stimulation alone significantly reduced stop-signal reaction time (SSRT) in the post-intervention and follow-up tests compared to the pre-intervention test. However, training alone only decreased SSRT in the post-test. The sham control exhibited no changes. Subgroup analysis revealed that the combined protocol and the stimulation alone induced a decrease in the SSRT of the low-performance subgroup at the post-test and follow-up test compared with the pre-test. However, only the combined protocol, but not the stimulation alone, improved the SSRT of the high-performance subgroup. The transfer effects were absent.ConclusionThis study provides supportive evidence for the synergistic effect of the combined protocol, indicating its superiority over the single intervention method. In addition, the long-term after-effects can persist for up to at least 1 month. Our findings also provide insights into the clinical application and strategy for treating response inhibition deficits.
Collapse
|
8
|
Guo Z, Gong Y, Lu H, Qiu R, Wang X, Zhu X, You X. Multitarget high-definition transcranial direct current stimulation improves response inhibition more than single-target high-definition transcranial direct current stimulation in healthy participants. Front Neurosci 2022; 16:905247. [PMID: 35968393 PMCID: PMC9372262 DOI: 10.3389/fnins.2022.905247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Prior studies have focused on single-target anodal transcranial direct current stimulation (tDCS) over the right inferior frontal gyrus (rIFG) or pre-supplementary motor area (pre-SMA) to improve response inhibition in healthy individuals. However, the results are contradictory and the effect of multitarget anodal stimulation over both brain regions has never been investigated. The present study aimed to investigate the behavioral and neurophysiological effects of different forms of anodal high-definition tDCS (HD-tDCS) on improving response inhibition, including HD-tDCS over the rIFG or pre-SMA and multitarget HD-tDCS over both areas. Ninety-two healthy participants were randomly assigned to receive single-session (20 min) anodal HD-tDCS over rIFG + pre-SMA, rIFG, pre-SMA, or sham stimulation. Before and immediately after tDCS intervention, participants completed a stop-signal task (SST) and a go/nogo task (GNG). Their cortical activity was recorded using functional near-infrared spectroscopy (fNIRS) during the go/nogo task. The results showed multitarget stimulation produced a significant reduction in stop-signal reaction time (SSRT) relative to baseline. The pre-to-post SSRT change was not significant for rIFG, pre-SMA, or sham stimulation. Further analyses revealed multitarget HD-tDCS significantly decreased SSRT in both the high-performance and low-performance subgroups compared with the rIFG condition which decreased SSRT only in the low-performance subgroup. Only the multitarget condition significantly improved neural efficiency as indexed by lower △oxy-Hb after stimulation. In conclusion, the present study provides important preliminary evidence that multitarget HD-tDCS is a promising avenue to improve stimulation efficacy, establishing a more effective montage to enhance response inhibition relative to the commonly used single-target stimulation.
Collapse
Affiliation(s)
- Zhihua Guo
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yue Gong
- School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Hongliang Lu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Rui Qiu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xinlu Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xia Zhu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
- *Correspondence: Xia Zhu,
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi’an, China
- Xuqun You,
| |
Collapse
|
9
|
Zhou J, Xuan B. Inhibitory control training and transcranial direct current stimulation of the pre-supplementary motor area: behavioral gains and transfer effects. Exp Brain Res 2022; 240:909-925. [PMID: 35083548 DOI: 10.1007/s00221-021-06297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Inhibitory control is a critical part of executive function and an important cognitive process in daily life. It is currently unclear how to optimally improve inhibitory control ability through behavior training and other interventions. Here, we explored the factors that influence inhibition control training in two experiments, focusing on the gains and transfer effects of training. Experiments 1 and 2 investigated the effects of anodal transcranial direct current stimulation (tDCS) over the pre-supplementary motor area and an increase in training duration on the training effect for inhibitory control, respectively, as well as the transfer effects when participants completed the Stroop and directed forgetting tasks. The results showed a stable training effect in relation to inhibitory control and a transfer effect for the Stroop task. Anodal tDCS in the pre-supplementary motor area could effectively improve inhibitory control ability, but not further enhance the training effect for inhibitory control. Moreover, increasing the training duration did not enhance the training effect for inhibitory control. The addition of tDCS and the extension of training duration failed to enhance the training effect, indicating that there may be a limitation of improvement in inhibitory control. The findings provide evidence regarding the further intervention effects of behavioral training and tDCS.
Collapse
Affiliation(s)
- Jing Zhou
- School of Educational Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China.
| |
Collapse
|
10
|
Initial performance modulates the effects of cathodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex on inhibitory control. Brain Res 2022; 1774:147722. [PMID: 34774867 DOI: 10.1016/j.brainres.2021.147722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 11/27/2022]
Abstract
Transcranial direct current stimulation (tDCS) has received considerable attention as a new option to facilitate cognitive ability or rehabilitation in healthy populations or in individuals with neuropsychiatric disorders. However, the tDCS effect varies widely, possibly because individual differences in initial performance have frequently been ignored in previous research. Here, we aimed to examine the influence of initial performance on inhibitory control after tDCS. Fifty-six participants were randomly divided into three groups: anodal, cathodal and sham stimulation. The go/no-go task, stop-signal task and Stroop task were performed to measure inhibitory control before and immediately after tDCS. tDCS was applied to the F4 site (international 10-20 system), corresponding to the right dorsolateral prefrontal cortex (rDLPFC), for 20 min with an intensity of 1.5 mA. Neither anodal nor cathodal stimulation had significant effects on the performance of these three tasks at the group level in comparison with sham stimulation. However, the analyses at the individual level only showed a negative relationship between baseline performance and the magnitude of change in go/no-go task performance following cathodal tDCS, indicating the dependence of the change amount on initial performance, with greater gains (or losses) observed in individuals with poorer (or better) initial performance. Together, the initial performance modulates the proactive inhibitory effect of cathodal tDCS of the rDLPFC. Additionally, the rDLPFC plays a crucial role in proactive inhibition.
Collapse
|
11
|
Fujiyama H, Tan J, Puri R, Hinder MR. Influence of tDCS over right inferior frontal gyrus and pre-supplementary motor area on perceptual decision-making and response inhibition: A healthy ageing perspective. Neurobiol Aging 2021; 109:11-21. [PMID: 34634749 DOI: 10.1016/j.neurobiolaging.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
A wide body of literature suggests that transcranial direct current stimulation (tDCS) administered over the prefrontal cortex can improve executive function - including decision-making and inhibitory control - in healthy young adults. However, the effects of tDCS in older adults are largely unknown. Here, using a double-blind, sham-controlled approach, changes in a combined perceptual decision-making and inhibitory control task were assessed before and after the application of tDCS (1 mA, 20 minute) targeting the right inferior frontal gyrus (rIFG) or pre-supplementary motor area (preSMA) in 42 young (18-34 years) and 41 older (60-80 years) healthy adults. Compared to sham stimulation, anodal tDCS over the preSMA improved decision-making speed for both age groups. Furthermore, the inhibitory control performance of older and younger adults was improved by preSMA and rIFG stimulation, respectively. This study provides evidence that tDCS can improve both perceptual decision-making and inhibitory control in healthy older adults, with the causal role of the preSMA and rIFG regions in cognitive control appearing to vary as a function of healthy ageing.
Collapse
Affiliation(s)
- Hakuei Fujiyama
- Psychology, Murdoch University, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.
| | - Jane Tan
- Action and Cognition Laboratory, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Rohan Puri
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
12
|
Fehring DJ, Samandra R, Haque ZZ, Jaberzadeh S, Rosa M, Mansouri FA. Investigating the sex-dependent effects of prefrontal cortex stimulation on response execution and inhibition. Biol Sex Differ 2021; 12:47. [PMID: 34404467 PMCID: PMC8369781 DOI: 10.1186/s13293-021-00390-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Context-dependent execution or inhibition of a response is an important aspect of executive control, which is impaired in neuropsychological and addiction disorders. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) has been considered a remedial approach to address deficits in response control; however, considerable variability has been observed in tDCS effects. These variabilities might be related to contextual differences such as background visual-auditory stimuli or subjects' sex. In this study, we examined the interaction of two contextual factors, participants' sex and background acoustic stimuli, in modulating the effects of tDCS on response inhibition and execution. In a sham-controlled and cross-over (repeated-measure) design, 73 participants (37 females) performed a Stop-Signal Task in different background acoustic conditions before and after tDCS (anodal or sham) was applied over the DLPFC. Participants had to execute a speeded response in Go trials but inhibit their response in Stop trials. Participants' sex was fully counterbalanced across all experimental conditions (acoustic and tDCS). We found significant practice-related learning that appeared as changes in indices of response inhibition (stop-signal reaction time and percentage of successful inhibition) and action execution (response time and percentage correct). The tDCS and acoustic stimuli interactively influenced practice-related changes in response inhibition and these effects were uniformly seen in both males and females. However, the effects of tDCS on response execution (percentage of correct responses) were sex-dependent in that practice-related changes diminished in females but heightened in males. Our findings indicate that participants' sex influenced the effects of tDCS on the execution, but not inhibition, of responses.
Collapse
Affiliation(s)
- Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Non-Invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Melbourne, VIC, 3199, Australia
| | - Marcello Rosa
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Farshad A Mansouri
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
13
|
Friehs MA, Frings C, Hartwigsen G. Effects of single-session transcranial direct current stimulation on reactive response inhibition. Neurosci Biobehav Rev 2021; 128:749-765. [PMID: 34271027 DOI: 10.1016/j.neubiorev.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
Transcranial direct current stimulation (tDCS) is widely used to explore the role of various cortical regions for reactive response inhibition. In recent years, tDCS studies reported polarity-, time- and stimulation-site dependent effects on response inhibition. Given the large parameter space in which study designs, tDCS procedures and task procedures can differ, it is crucial to systematically explore the existing tDCS literature to increase the current understanding of potential modulatory effects and limitations of different approaches. We performed a systematic review on the modulatory effects of tDCS on response inhibition as measured by the Stop-Signal Task. The final dataset shows a large variation in methodology and heterogeneous effects of tDCS on performance. The most consistent result across studies is a performance enhancement due to anodal tDCS over the right prefrontal cortex. Partially sub-optimal choices in study design, methodology and lacking consistency in reporting procedures may impede valid conclusions and obscured the effects of tDCS on response inhibition in some previous studies. Finally, we outline future directions and areas to improve research.
Collapse
Affiliation(s)
| | - Christian Frings
- Trier University, Department of Cognitive Psychology and Methodology, Trier, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive Brain Sciences, Leipzig, Germany
| |
Collapse
|
14
|
Ewen JB, Puts NA, Mostofsky SH, Horn PS, Gilbert DL. Associations between Task-Related Modulation of Motor-Evoked Potentials and EEG Event-Related Desynchronization in Children with ADHD. Cereb Cortex 2021; 31:5526-5535. [PMID: 34231840 PMCID: PMC8568000 DOI: 10.1093/cercor/bhab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) have previously shown a decreased magnitude of event-related desynchronization (ERD) during a finger-tapping task, with a large between-group effect. Because the neurobiology underlying several transcranial magnetic stimulation (TMS) measures have been studied in multiple contexts, we compared ERD and 3 TMS measures (resting motor threshold [RMT], short-interval cortical inhibition [SICI], and task-related up-modulation [TRUM]) within 14 participants with ADHD (ages 8-12 years) and 17 control children. The typically developing (TD) group showed a correlation between greater RMT and greater magnitude of alpha (10-13 Hz, here) ERD, and there was no diagnostic interaction effect, consistent with a rudimentary model of greater needed energy input to stimulate movement. Similarly, inhibition measured by SICI was also greater in the TD group when the magnitude of movement-related ERD was higher; there was a miniscule diagnostic interaction effect. Finally, TRUM during a response-inhibition task showed an unanticipated pattern: in TD children, the greater TMS task modulation (TRUM) was associated with a smaller magnitude of ERD during finger-tapping. The ADHD group showed the opposite direction of association: Greater TRUM was associated with larger magnitude of ERD. Prior EEG results have demonstrated specific alterations of task-related modulation of cortical physiology, and the current results provide a fulcrum for multimodal study.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolaas A Puts
- Neurodevelopmental Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Stewart H Mostofsky
- Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul S Horn
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Donald L Gilbert
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Machado S, Travassos B, Teixeira DS, Rodrigues F, Cid L, Monteiro D. Could tDCS Be a Potential Performance-Enhancing Tool for Acute Neurocognitive Modulation in eSports? A Perspective Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073678. [PMID: 33916018 PMCID: PMC8037790 DOI: 10.3390/ijerph18073678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Competitive sports involve physical and cognitive skills. In traditional sports, there is a greater dependence on the development and performance of both motor and cognitive skills, unlike electronic sports (eSports), which depend much more on neurocognitive skills for success. However, little is known about neurocognitive functions and effective strategies designed to develop and optimize neurocognitive performance in eSports athletes. One such strategy is transcranial direct current stimulation (tDCS), characterized as a weak electric current applied on the scalp to induce prolonged changes in cortical excitability. Therefore, our objective is to propose anodal (a)-tDCS as a performance-enhancing tool for neurocognitive functions in eSports. In this manuscript, we discussed the neurocognitive processes that underlie exceptionally skilled performances in eSports and how tDCS could be used for acute modulation of these processes in eSports. Based on the results from tDCS studies in healthy people, professional athletes, and video game players, it seems that tDCS is applied over the left dorsolateral prefrontal cortex (DLPFC) as a potential performance-enhancing tool for neurocognition in eSports.
Collapse
Affiliation(s)
- Sergio Machado
- Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói 24456-570, Brazil;
- Department of Sports Science, University of Beira Interior, 6201-001 Covilhã, Portugal;
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados 26325-020, Brazil
| | - Bruno Travassos
- Department of Sports Science, University of Beira Interior, 6201-001 Covilhã, Portugal;
- Research Center in Sport, Health and Human Development (CIDESD), 5000-558 Vila Real, Portugal;
- Portugal Football School, Portuguese Football Federation, 1495-433 Cruz Quebrada, Portugal
| | - Diogo S. Teixeira
- Faculty of Physical Education and Sport, Lusófona University, 1749-024 Lisbon, Portugal;
- Research Center in Sport, Physical Education, and Exercise and Health (CIDEFES), (CIDEFES), 1749-024 Lisbon, Portugal
| | - Filipe Rodrigues
- Sport Science School of Rio Maior, ESDRM-IPSantarém, 2040-413 Rio Maio, Portugal;
- Life Quality Research Center (CIEQV), 2040-413 Rio Maior, Portugal
| | - Luis Cid
- Research Center in Sport, Health and Human Development (CIDESD), 5000-558 Vila Real, Portugal;
- Sport Science School of Rio Maior, ESDRM-IPSantarém, 2040-413 Rio Maio, Portugal;
| | - Diogo Monteiro
- Research Center in Sport, Health and Human Development (CIDESD), 5000-558 Vila Real, Portugal;
- ESECS, Polytechnic of Leiria, 2411-901 Leiria, Portugal
- Correspondence:
| |
Collapse
|
16
|
Perrotta D, Bianco V, Berchicci M, Quinzi F, Perri RL. Anodal tDCS over the dorsolateral prefrontal cortex reduces Stroop errors. A comparison of different tasks and designs. Behav Brain Res 2021; 405:113215. [PMID: 33662440 DOI: 10.1016/j.bbr.2021.113215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
In the present work, we evaluated the possibility to induce changes in the inhibitory control through non-invasive excitatory stimulation of the prefrontal cortex (PFC). To this aim, different montages of the transcranial direct current stimulation (tDCS) were adopted in three separate experiments, wherein different cognitive tasks were performed before and after the stimulation. In the first experiment, participants performed a visual Go/no-go task, and a bilateral anodic or sham stimulation was provided over the scalp area corresponding to the inferior frontal gyrus (IFG). In the second experiment, the IFG was stimulated unilaterally over the right hemisphere, and participants performed a Stroop task combined with a concurrent n-back task, which was aimed at overloading PFC activity. Since no behavioral effects of tDCS were observed in both experiments, we conducted a third experiment with different montage and paradigm. Stimulation was provided bilaterally over the dorsolateral PFC (DLPFC) in the context of a classic Stroop task: results indicated that anodal stimulation favored a reduction of errors. Present findings suggest that the bihemispheric stimulation of the DLPFC might be effective to increase inhibition in healthy subjects, and that this effect might be mediated by the implementation of sustained attention, as predicted by the attentional account of the inhibitory control.
Collapse
Affiliation(s)
| | - Valentina Bianco
- IRCCS Santa Lucia Foundation, Rome, Italy; Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Marika Berchicci
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Federico Quinzi
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Rinaldo Livio Perri
- University "Niccolò Cusano", Italy; Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
17
|
Dubreuil-Vall L, Gomez-Bernal F, Villegas AC, Cirillo P, Surman C, Ruffini G, Widge AS, Camprodon JA. Transcranial Direct Current Stimulation to the Left Dorsolateral Prefrontal Cortex Improves Cognitive Control in Patients With Attention-Deficit/Hyperactivity Disorder: A Randomized Behavioral and Neurophysiological Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:439-448. [PMID: 33549516 DOI: 10.1016/j.bpsc.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with significant morbidity and mortality that may affect over 5% of children and approximately 2.8% of adults worldwide. Pharmacological and behavioral therapies for ADHD exist, but critical symptoms such as dysexecutive deficits remain unaffected. In a randomized, sham-controlled, double-blind, crossover mechanistic study, we assessed the cognitive and physiological effects of transcranial direct current stimulation (tDCS) in 40 adult patients with ADHD in order to identify diagnostic (cross-sectional) and treatment biomarkers (targets). METHODS Patients performed three experimental sessions in which they received 30 minutes of 2 mA anodal tDCS targeting the left dorsolateral prefrontal cortex, 30 minutes of 2 mA anodal tDCS targeting the right dorsolateral prefrontal cortex, and 30 minutes of sham. Before and after each session, half the patients completed the Eriksen flanker task and the other half completed the stop signal task while we assessed behavior (reaction time, accuracy) and neurophysiology (event-related potentials). RESULTS Anodal tDCS to the left dorsolateral prefrontal cortex modulated cognitive (reaction time) and physiological (P300 amplitude) measures in the Eriksen flanker task in a state-dependent manner, but no effects were found in the stop signal reaction time of the stop signal task. CONCLUSIONS These findings show procognitive effects in ADHD associated with the modulation of event-related potential signatures of cognitive control, linking target engagement with cognitive benefit, proving the value of event-related potentials as cross-sectional biomarkers of executive performance, and mechanistically supporting the state-dependent nature of tDCS. We interpret these results as an improvement in cognitive control but not action cancellation, supporting the existence of different impulsivity constructs with overlapping but distinct anatomical substrates, and highlighting the implications for the development of individualized therapeutics.
Collapse
Affiliation(s)
- Laura Dubreuil-Vall
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona, Barcelona, Spain; Neuroelectrics Corporation, Barcelona, Spain.
| | - Federico Gomez-Bernal
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana C Villegas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patricia Cirillo
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Craig Surman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Borgomaneri S, Serio G, Battaglia S. Please, don't do it! Fifteen years of progress of non-invasive brain stimulation in action inhibition. Cortex 2020; 132:404-422. [PMID: 33045520 DOI: 10.1016/j.cortex.2020.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
The ability to inhibit prepotent responses is critical for survival. Action inhibition can be investigated using a stop-signal task (SST), designed to provide a reliable measure of the time taken by the brain to suppress motor responses. Here we review the major research advances using the combination of this paradigm with the use of non-invasive brain stimulation techniques in the last fifteen years. We highlight new methodological approaches to understanding and exploiting several processes underlying action control, which is critically impaired in several psychiatric disorders. In this review we present and discuss existing literature demonstrating i) the importance of the use of non-invasive brain stimulation in studying human action inhibition, unveiling the neural network involved ii) the critical role of prefrontal areas, including the pre-supplementary motor area (pre-SMA) and the inferior frontal gyrus (IFG), in inhibitory control iii) the neural and behavioral evidence of proactive and reactive action inhibition. As the main result of this review, the specific literature demonstrated the crucial role of pre-SMA and IFG as evidenced from the field of noninvasive brain stimulation studies. Finally, we discuss the critical questions that remain unanswered about how such non-invasive brain stimulation protocols can be translated to therapeutic treatments.
Collapse
Affiliation(s)
- Sara Borgomaneri
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Gianluigi Serio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy
| | - Simone Battaglia
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy
| |
Collapse
|
19
|
Thunberg C, Messel MS, Raud L, Huster RJ. tDCS over the inferior frontal gyri and visual cortices did not improve response inhibition. Sci Rep 2020; 10:7749. [PMID: 32385323 PMCID: PMC7210274 DOI: 10.1038/s41598-020-62921-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022] Open
Abstract
The ability to cancel an already initiated response is central to flexible behavior. While several different behavioral and neural markers have been suggested to quantify the latency of the stopping process, it remains unclear if they quantify the stopping process itself, or other supporting mechanisms such as visual and/or attentional processing. The present study sought to investigate the contributions of inhibitory and sensory processes to stopping latency markers by combining transcranial direct current stimulation (tDCS), electroencephalography (EEG) and electromyography (EMG) recordings in a within-participant design. Active and sham tDCS were applied over the inferior frontal gyri (IFG) and visual cortices (VC), combined with both online and offline EEG and EMG recordings. We found evidence that neither of the active tDCS condition affected stopping latencies relative to sham stimulation. Our results challenge previous findings suggesting that anodal tDCS over the IFG can reduce stopping latency and demonstrates the necessity of adequate control conditions in tDCS research. Additionally, while the different putative markers of stopping latency showed generally positive correlations with each other, they also showed substantial variation in the estimated latency of inhibition, making it unlikely that they all capture the same construct exclusively.
Collapse
Affiliation(s)
- Christina Thunberg
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway
| | - Mari S Messel
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
| | - Liisa Raud
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway
- Cognitive Electrophysiology Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway.
- Cognitive Electrophysiology Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| |
Collapse
|
20
|
Miles M, Mueller D, Gay-Betton D, Baum Miller SH, Massa S, Shi Y, Shotwell MS, Lane-Fall M, Schlesinger JJ. Observational Study of Clinician Attentional Reserves (OSCAR): Acuity-Based Rounds Help Preserve Clinicians' Attention. Crit Care Med 2020; 48:507-514. [PMID: 32205597 DOI: 10.1097/ccm.0000000000004205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Team rounding in the ICU can tax clinicians' finite attentional resources. We hypothesized that a novel approach to rounding, where patients are seen in a decreasing order of acuity, would decrease attentional attrition. DESIGN Prospective interventional internal-control cohort study in which stop signal task testing was used as a proxy for attentional reserves. Stop signal task is a measure of cognitive control and response inhibition in addition to performance monitoring, all reflective of executive control abilities, and our surrogate for attentional reserves. SETTING The ICUs of Vanderbilt University Medical Center (site 1) and the University of Pennsylvania (site 2) from November 2014 to August 2017. SUBJECTS Thirty-three clinicians at site 1, and 24 clinicians at site 2. INTERVENTIONS Acuity-based rounding, in which clinicians round from highest to lowest acuity as determined by Sequential Organ Failure Assessment score or an equivalent acuity score. MEASUREMENTS AND MAIN RESULTS The stop signal task results of ICU staff at two sites were compared for conventional (in room order) versus novel (in decreasing order of acuity) rounding order. At site 1, the difference in stop signal reaction time change between two rounding types was -39.0 ms (95% CI, -50.6 to -27.4 ms; p < 0.001), and at site 2, the performance stop signal reaction time was -15.6 ms (95% CI, -29.1 to -2.1 ms; p = 0.023). These sub-second changes, while small, are significant in the neuroscience domain. CONCLUSIONS Rounding in decreasing order of patient acuity mitigated attrition in attentional reserves when compared with the traditional rounding method.
Collapse
Affiliation(s)
- Merrick Miles
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Dorothee Mueller
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel Gay-Betton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Sarah H Baum Miller
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA
| | - Scott Massa
- Department of Anesthesiology and Critical Care, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Yaping Shi
- Department of Biostatistics, Vanderbilt University, Nashville, TN
| | | | - Meghan Lane-Fall
- Department of Anesthesiology and Critical Care, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Joseph J Schlesinger
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Electrical and Computer Engineering, McGill University Montréal, QC, Canada
| |
Collapse
|
21
|
Teti Mayer J, Chopard G, Nicolier M, Gabriel D, Masse C, Giustiniani J, Vandel P, Haffen E, Bennabi D. Can transcranial direct current stimulation (tDCS) improve impulsivity in healthy and psychiatric adult populations? A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109814. [PMID: 31715284 DOI: 10.1016/j.pnpbp.2019.109814] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Impulsivity is a multidimensional phenomenon that remains hard to define. It compounds the core pathological construct of many neuropsychiatric illnesses, and despite its close relation to suicide risk, it currently has no specific treatment. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique whose application results in cognitive function improvement, both in healthy and psychiatric populations. Following PRISMA recommendations, a systematic review of the literature concerning tDCS's effects on impulsive behaviour was performed using the PubMed database. The research was based on the combination of the keyword 'tDCS' with 'impulsivity', 'response inhibition', 'risk-taking', 'planning', 'delay discounting' or 'craving'. The initial search yielded 309 articles, 92 of which were included. Seventy-four papers demonstrated improvement in task performance related to impulsivity in both healthy and clinical adult populations. However, results were often inconsistent. The conditions associated with improvement, such as tDCS parameters and other aspects that may influence tDCS's outcomes, are discussed. The overall effects of tDCS on impulsivity are promising. Yet further research is required to develop a more comprehensive understanding of impulsivity, allowing for a more accurate assessment of its behavioural outcomes as well as a definition of tDCS therapeutic protocols for impulsive disorders.
Collapse
Affiliation(s)
- Juliana Teti Mayer
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France.
| | - Gilles Chopard
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Mémoire Ressources et Recherche, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Magali Nicolier
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Damien Gabriel
- Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Caroline Masse
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Julie Giustiniani
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France
| | - Pierre Vandel
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Mémoire Ressources et Recherche, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Emmanuel Haffen
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Expert Dépression Résistante FondaMental, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| | - Djamila Bennabi
- Service de Psychiatrie de l'Adulte, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Centre d'Investigation Clinique, INSERM CIC 1431, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France; Laboratoire de Neurosciences Intégratives et Cliniques EA 481, Université de Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000 Besançon, France; Centre Expert Dépression Résistante FondaMental, Centre Hospitalier Universitaire de Besançon, 25030 Besançon Cedex, France
| |
Collapse
|
22
|
Discourse management during speech perception: A functional magnetic resonance imaging (fMRI) study. Neuroimage 2019; 202:116047. [DOI: 10.1016/j.neuroimage.2019.116047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
|
23
|
Fehring DJ, Illipparampil R, Acevedo N, Jaberzadeh S, Fitzgerald PB, Mansouri FA. Interaction of task-related learning and transcranial direct current stimulation of the prefrontal cortex in modulating executive functions. Neuropsychologia 2019; 131:148-159. [DOI: 10.1016/j.neuropsychologia.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 05/10/2019] [Indexed: 01/24/2023]
|
24
|
Obayashi S. Frontal dynamic activity as a predictor of cognitive dysfunction after pontine ischemia. NeuroRehabilitation 2019; 44:251-261. [DOI: 10.3233/nre-182566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Shigeru Obayashi
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Japan
- Department of Rehabilitation Medicine, Chiba-Hokusoh Hospital Nippon Medical School, Japan
| |
Collapse
|
25
|
Gowda SM, Narayanaswamy JC, Hazari N, Bose A, Chhabra H, Balachander S, Bhaskarapillai B, Shivakumar V, Venkatasubramanian G, Reddy YCJ. Efficacy of pre-supplementary motor area transcranial direct current stimulation for treatment resistant obsessive compulsive disorder: A randomized, double blinded, sham controlled trial. Brain Stimul 2019; 12:922-929. [PMID: 30808612 DOI: 10.1016/j.brs.2019.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A significant proportion of obsessive compulsive disorder (OCD) patients do not respond to specific serotonin reuptake inhibitors (SSRIs). There is a need to evaluate novel treatment options for OCD. OBJECTIVE In this double blinded, randomized, sham controlled study, we investigated the efficacy of add-on transcranial direct current stimulation (tDCS) in reducing the symptoms in SSRI-resistant OCD patients by employing anodal pre-supplementary motor area (pre-SMA) stimulation. METHOD Twenty-five patients with DSM-IV OCD having persistent symptoms despite adequate and stable treatment with at least one SSRI were randomly allocated to receive 20 min of verum (active) 2-mA tDCS or sham stimulation twice daily on 5 consecutive days [anode over Pre-SMA; cathode over right supra-orbital area]. Response to treatment was defined as at least 35% reduction in the Yale-Brown Obsessive-Compulsive Scale (YBOCS) total score along with a Clinical Global Impression - Improvement (CGI-I) score of 1 (very much improved) or 2 (much improved). RESULTS The response rate was significantly greater in the verum tDCS(4 out of 12) compared to sham-tDCS (0 out of 13) [Fisher's exact test, p = 0.04]. Repeated measures analysis of variance with tDCS type (verum vs. sham) as between subjects factor showed that there was a significant tDCS-type X time-point interaction with significantly greater reduction of YBOCS total score [F (1,22) = 4.95,p = 0.04,partial-η2 = 0.18] in verum-tDCS group. CONCLUSIONS The results of this RCT suggest that tDCS may be effective in treating SSRI-resistant OCD. Future studies should examine the efficacy in larger samples of OCD and explore other potential target regions using randomized sham-controlled designs, in addition to examining the sustainability of the beneficial effects. TRIAL REGISTRATION Clinical Trials Registry India (http://ctri.nic.in/Clinicaltrials/login.php): Registration Number- CTRI/2016/04/006837).
Collapse
Affiliation(s)
- Shayanth M Gowda
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Janardhanan C Narayanaswamy
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India; Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India.
| | - Nandita Hazari
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Anushree Bose
- Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Harleen Chhabra
- Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Srinivas Balachander
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Binukumar Bhaskarapillai
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Venkataram Shivakumar
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India; Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Ganesan Venkatasubramanian
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India; Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Y C Janardhan Reddy
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| |
Collapse
|
26
|
Tan J, Iyer KK, Tang AD, Jamil A, Martins RN, Sohrabi HR, Nitsche MA, Hinder MR, Fujiyama H. Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Neuroimage 2018; 185:490-512. [PMID: 30342977 DOI: 10.1016/j.neuroimage.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Response inhibition, the ability to withhold a dominant and prepotent response following a change in circumstance or sensory stimuli, declines with advancing age. While non-invasive brain stimulation (NiBS) has shown promise in alleviating some cognitive and motor functions in healthy older individuals, NiBS research focusing on response inhibition has mostly been conducted on younger adults. These extant studies have primarily focused on modulating the activity of distinct neural regions known to be critical for response inhibition, including the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA). However, given that changes in structural and functional connectivity have been associated with healthy aging, this review proposes that NiBS protocols aimed at modulating the functional connectivity between the rIFG and pre-SMA may be the most efficacious approach to investigate-and perhaps even alleviate-age-related deficits in inhibitory control.
Collapse
Affiliation(s)
- Jane Tan
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Kartik K Iyer
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Australia
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Medicine (Division of Psychology), University of Tasmania, Hobart, Australia
| | - Hakuei Fujiyama
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia.
| |
Collapse
|
27
|
Dietrich S, Hertrich I, Müller-Dahlhaus F, Ackermann H, Belardinelli P, Desideri D, Seibold VC, Ziemann U. Reduced Performance During a Sentence Repetition Task by Continuous Theta-Burst Magnetic Stimulation of the Pre-supplementary Motor Area. Front Neurosci 2018; 12:361. [PMID: 29896086 PMCID: PMC5987029 DOI: 10.3389/fnins.2018.00361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022] Open
Abstract
The pre-supplementary motor area (pre-SMA) is engaged in speech comprehension under difficult circumstances such as poor acoustic signal quality or time-critical conditions. Previous studies found that left pre-SMA is activated when subjects listen to accelerated speech. Here, the functional role of pre-SMA was tested for accelerated speech comprehension by inducing a transient “virtual lesion” using continuous theta-burst stimulation (cTBS). Participants were tested (1) prior to (pre-baseline), (2) 10 min after (test condition for the cTBS effect), and (3) 60 min after stimulation (post-baseline) using a sentence repetition task (formant-synthesized at rates of 8, 10, 12, 14, and 16 syllables/s). Speech comprehension was quantified by the percentage of correctly reproduced speech material. For high speech rates, subjects showed decreased performance after cTBS of pre-SMA. Regarding the error pattern, the number of incorrect words without any semantic or phonological similarity to the target context increased, while related words decreased. Thus, the transient impairment of pre-SMA seems to affect its inhibitory function that normally eliminates erroneous speech material prior to speaking or, in case of perception, prior to encoding into a semantically/pragmatically meaningful message.
Collapse
Affiliation(s)
- Susanne Dietrich
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Psychology, Evolutionary Cognition, University of Tübingen, Tübingen, Germany
| | - Ingo Hertrich
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, University of Mainz, Mainz, Germany
| | - Hermann Ackermann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Debora Desideri
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Verena C Seibold
- Department of Psychology, Evolutionary Cognition, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Sallard E, Mouthon M, De Pretto M, Spierer L. Modulation of inhibitory control by prefrontal anodal tDCS: A crossover double-blind sham-controlled fMRI study. PLoS One 2018; 13:e0194936. [PMID: 29590181 PMCID: PMC5874055 DOI: 10.1371/journal.pone.0194936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
Prefrontal anodal transcranial direct current stimulation (tDCS) has been proposed as a potential approach to improve inhibitory control performance. The functional consequences of tDCS during inhibition tasks remain, however, largely unresolved. We addressed this question by analyzing functional magnetic resonance imaging (fMRI) recorded while participants completed a Go/NoGo task after right-lateralized prefrontal anodal tDCS with a crossover, sham-controlled, double-blind experimental design. We replicated previous evidence for an absence of offline effect of anodal stimulation on Go/NoGo performance. The fMRI results revealed a larger increase in right ventrolateral prefrontal activity for Go than NoGo trials in the anodal than sham condition. This pattern suggests that tDCS-induced increases in cortical excitability have larger effects on fMRI activity in regions with a lower task-related engagement. This was the case for the right prefrontal cortex in the Go condition in our task because while reactive inhibition was not engaged during execution trials, the unpredictability of the demand for inhibitory control still incited an engagement of proactive inhibition. Exploratory analyses further revealed that right prefrontal stimulation interacted with task-related functional demands in the supplementary motor area and the thalamus. Our collective results emphasize the dependency of offline tDCS functional effects on the task-related engagement of the stimulated areas and suggest that this factor might partly account for the discrepancies in the functional effects of tDCS observed in previous studies.
Collapse
Affiliation(s)
- Etienne Sallard
- Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Michael De Pretto
- Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Lucas Spierer
- Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
29
|
To WT, Eroh J, Hart J, Vanneste S. Exploring the effects of anodal and cathodal high definition transcranial direct current stimulation targeting the dorsal anterior cingulate cortex. Sci Rep 2018. [PMID: 29535340 PMCID: PMC5849683 DOI: 10.1038/s41598-018-22730-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) has been identified as a core region affected by many disorders, representing a promising target for neuromodulation. High Definition-transcranial Direct Current Stimulation (HD-tDCS) is a non-invasive neuromodulation technique that has already shown promising outcomes and has been tested to engage deeper structures. This study investigates whether it is possible to modulate dACC activity using anodal and cathodal HD-tDCS. Furthermore, it examines what effects anodal and cathodal HD-tDCS targeting dACC have on cognitive and emotional processing. Forty-five healthy subjects were randomly assigned to 1 of 3 groups: anodal, cathodal, and sham. Resting-state electroencephalography (rsEEG) and a cognitive and emotional Counting Stroop task were administered before and after HD-tDCS. RsEEG showed changes: anodal HD-tDCS showed significant increase in beta frequency band activity in dACC, while cathodal HD-tDCS led to significant increase in activity at dorsal and rostral ACC in the theta frequency band. Behavioral changes were also found after anodal HD-tDCS in the cognitive Counting Stroop for incongruent trials and after cathodal HD-tDCS in the emotional Counting Stroop for emotional trials. This study demonstrated that HD-tDCS is able to modulate dACC activity, suggesting that it has the potential to be used as a treatment tool.
Collapse
Affiliation(s)
- Wing Ting To
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA.
| | - Justin Eroh
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| | - John Hart
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| | - Sven Vanneste
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| |
Collapse
|
30
|
Yaniv A, Lavidor M. Without Blinking an Eye: Proactive Motor Control Enhancement. JOURNAL OF COGNITIVE ENHANCEMENT 2018. [DOI: 10.1007/s41465-017-0060-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Transcranial direct current stimulation as a motor neurorehabilitation tool: an empirical review. Biomed Eng Online 2017; 16:76. [PMID: 28830433 PMCID: PMC5568608 DOI: 10.1186/s12938-017-0361-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The present review collects the most relevant empirical evidence available in the literature until date regarding the effects of transcranial direct current stimulation (tDCS) on the human motor function. tDCS in a non-invasive neurostimulation technique that delivers a weak current through the brain scalp altering the cortical excitability on the target brain area. The electrical current modulates the resting membrane potential of a variety of neuronal population (as pyramidal and gabaergic neurons); raising or dropping the firing rate up or down, depending on the nature of the electrode and the applied intensity. These local changes additionally have shown long-lasting effects, evidenced by its promotion of the brain-derived neurotrophic factor. Due to its easy and safe application and its neuromodulatory effects, tDCS has attracted a big attention in the motor neurorehabilitation field among the last years. Therefore, the present manuscript updates the knowledge available about the main concept of tDCS, its practical use, safety considerations, and its underlying mechanisms of action. Moreover, we will focus on the empirical data obtained by studies regarding the application of tDCS on the motor function of healthy and clinical population, comprising motor deficiencies of a variety of pathologies as Parkinson's disease, stroke, multiple sclerosis and cerebral palsy, among others. Finally, we will discuss the main current issues and future directions of tDCS as a motor neurorehabilitation tool.
Collapse
|
32
|
Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev 2016; 68:602-610. [PMID: 27343998 DOI: 10.1016/j.neubiorev.2016.06.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Susanne Dietrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
33
|
|
34
|
de Hollander G, Labruna L, Sellaro R, Trutti A, Colzato LS, Ratcliff R, Ivry RB, Forstmann BU. Transcranial Direct Current Stimulation Does Not Influence the Speed-Accuracy Tradeoff in Perceptual Decision-making: Evidence from Three Independent Studies. J Cogn Neurosci 2016; 28:1283-94. [PMID: 27054398 DOI: 10.1162/jocn_a_00967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In perceptual decision-making tasks, people balance the speed and accuracy with which they make their decisions by modulating a response threshold. Neuroimaging studies suggest that this speed-accuracy tradeoff is implemented in a corticobasal ganglia network that includes an important contribution from the pre-SMA. To test this hypothesis, we used anodal transcranial direct current stimulation (tDCS) to modulate neural activity in pre-SMA while participants performed a simple perceptual decision-making task. Participants viewed a pattern of moving dots and judged the direction of the global motion. In separate trials, they were cued to either respond quickly or accurately. We used the diffusion decision model to estimate the response threshold parameter, comparing conditions in which participants received sham or anodal tDCS. In three independent experiments, we failed to observe an influence of tDCS on the response threshold. Additional, exploratory analyses showed no influence of tDCS on the duration of nondecision processes or on the efficiency of information processing. Taken together, these findings provide a cautionary note, either concerning the causal role of pre-SMA in decision-making or on the utility of tDCS for modifying response caution in decision-making tasks.
Collapse
|
35
|
Blunted cardiac stress reactors exhibit relatively high levels of behavioural impulsivity. Physiol Behav 2016; 159:40-4. [PMID: 26988282 DOI: 10.1016/j.physbeh.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/26/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
Abstract
Blunted physiological reactions to acute psychological stress are associated with a range of adverse health and behavioural outcomes. This study examined whether extreme stress reactors differ in their behavioural impulsivity. Individuals showing blunted (N=23) and exaggerated (N=23) cardiovascular reactions to stress were selected by screening a healthy student population (N=276). Behavioural impulsivity was measured via inhibitory control and motor impulsivity tasks. Blunted reactors exhibited greater impulsivity than exaggerated reactors on both stop-signal, F(1,41)=4.99, p=0.03, ηp(2)=0.108, and circle drawing, F(1,43)=4.00, p=0.05, η p(2)=0.085, tasks. Individuals showing blunted cardiovascular stress reactions are characterized by greater impulsivity which may contribute to their increased susceptibility to outcomes such as obesity and addiction.
Collapse
|
36
|
Bolzoni F, Bruttini C, Esposti R, Castellani C, Cavallari P. Transcranial direct current stimulation of SMA modulates anticipatory postural adjustments without affecting the primary movement. Behav Brain Res 2015; 291:407-413. [PMID: 26055201 DOI: 10.1016/j.bbr.2015.05.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022]
Abstract
Recent works provide evidences that anticipatory postural adjustments (APAs) are programmed with the prime mover recruitment as a shared posturo-focal command. However the ability of the CNS to adjust APAs to changes in the postural context implies that the postural and voluntary components should take different pathways before reaching the representation of single muscles in the primary motor cortex. Here we test if such bifurcation takes place at the level of the supplementary motor area (SMA). TDCS was applied over the SMA in 14 subjects, who produced a brisk index-finger flexion. This activity is preceded by inhibitory APAs, carved in the tonic activity of Biceps Brachii and Anterior Deltoid, and by an excitatory APA in Triceps Brachii. Subjects performed a series of 30 flexions before, during and after 20 min of tDCS in CATHODAL, ANODAL or SHAM configuration. The inhibitory APA in Biceps and the excitatory APA in Triceps were both greater in ANODAL than in SHAM and CATHODAL configurations, while no difference was found among the latter two (ANODAL vs. SHAM: biceps +26.5%, triceps +66%; ANODAL vs. CATHODAL: biceps +20.5%, triceps: +63.4%; for both muscles, ANOVA p<0.02, Tukey p<0.05). Instead, the APA in anterior deltoid was unchanged in all configurations. No changes were observed in prime mover recruitment and index-finger kinematics. Results show that the SMA is involved in modulating APAs amplitude. Moreover, the differential effect of tDCS observed on postural and voluntary commands suggests that these two components of the motor program are already separated before entering SMA.
Collapse
Affiliation(s)
- Francesco Bolzoni
- Section of Human Physiology of the DePT, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy.
| | - Carlo Bruttini
- Section of Human Physiology of the DePT, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy.
| | - Roberto Esposti
- Section of Human Physiology of the DePT, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy.
| | - Carlotta Castellani
- Section of Human Physiology of the DePT, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy.
| | - Paolo Cavallari
- Section of Human Physiology of the DePT, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy.
| |
Collapse
|
37
|
Anodal tDCS over the Motor Cortex on Prepared and Unprepared Responses in Young Adults. PLoS One 2015; 10:e0124509. [PMID: 25933204 PMCID: PMC4416898 DOI: 10.1371/journal.pone.0124509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/15/2015] [Indexed: 02/06/2023] Open
Abstract
Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been proposed as a possible therapeutic rehabilitation technique for motor impairment. However, despite extensive investigation into the effects of anodal tDCS on motor output, there is little information on how anodal tDCS affects response processes. In this study, we used a cued go/nogo task with both directional and non-directional cues to assess the effects of anodal tDCS over the dominant (left) primary motor cortex on prepared and unprepared motor responses. Three experiments explored whether the effectiveness of tDCS varied with timing between stimulation and test. Healthy, right-handed young adults participated in a double-blind randomised controlled design with crossover of anodal tDCS and sham stimulation. In Experiment 1, twenty-four healthy young adults received anodal tDCS over dominant M1 at least 40 mins before task performance. In Experiment 2, eight participants received anodal tDCS directly before task performance. In Experiment 3, twenty participants received anodal tDCS during task performance. In all three experiments, participants responded faster to directional compared to non-directional cues and with their right hand. However, anodal tDCS had no effect on go/nogo task performance at any stimulation – test interval. Bayesian analysis confirmed that anodal stimulation had no effect on response speed. We conclude that anodal tDCS over M1 does not improve response speed of prepared or unprepared responses of young adults in a go/nogo task.
Collapse
|
38
|
Kwon YH, Kwon JW, Lee MH. Effectiveness of motor sequential learning according to practice schedules in healthy adults; distributed practice versus massed practice. J Phys Ther Sci 2015; 27:769-72. [PMID: 25931727 PMCID: PMC4395711 DOI: 10.1589/jpts.27.769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of the current study was to compare the effectiveness of motor sequential learning according to two different types of practice schedules, distributed practice schedule (two 12-hour inter-trial intervals) and massed practice schedule (two 10-minute inter-trial intervals) using a serial reaction time (SRT) task. [Subjects and Methods] Thirty healthy subjects were recruited and then randomly and evenly assigned to either the distributed practice group or the massed practice group. All subjects performed three consecutive sessions of the SRT task following one of the two different types of practice schedules. Distributed practice was scheduled for two 12-hour inter-session intervals including sleeping time, whereas massed practice was administered for two 10-minute inter-session intervals. Response time (RT) and response accuracy (RA) were measured in at pre-test, mid-test, and post-test. [Results] For RT, univariate analysis demonstrated significant main effects in the within-group comparison of the three tests as well as the interaction effect of two groups × three tests, whereas the between-group comparison showed no significant effect. The results for RA showed no significant differences in neither the between-group comparison nor the interaction effect of two groups × three tests, whereas the within-group comparison of the three tests showed a significant main effect. [Conclusion] Distributed practice led to enhancement of motor skill acquisition at the first inter-session interval as well as at the second inter-interval the following day, compared to massed practice. Consequentially, the results of this study suggest that a distributed practice schedule can enhance the effectiveness of motor sequential learning in 1-day learning as well as for two days learning formats compared to massed practice.
Collapse
Affiliation(s)
- Yong Hyun Kwon
- Department of Physical Therapy, Yeungnam University
College, Republic of Korea
| | - Jung Won Kwon
- Department of Physical Therapy, Yeungnam University
College, Republic of Korea
| | - Myoung Hee Lee
- Department of Physical Therapy, Uiduk University, Republic of
Korea
| |
Collapse
|
39
|
Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS). Brain Stimul 2015; 8:535-50. [PMID: 25701175 DOI: 10.1016/j.brs.2015.01.400] [Citation(s) in RCA: 409] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Over the last 15-years, transcranial direct current stimulation (tDCS), a relatively novel form of neuromodulation, has seen a surge of popularity in both clinical and academic settings. Despite numerous claims suggesting that a single session of tDCS can modulate cognition in healthy adult populations (especially working memory and language production), the paradigms utilized and results reported in the literature are extremely variable. To address this, we conduct the largest quantitative review of the cognitive data to date. METHODS Single-session tDCS data in healthy adults (18-50) from every cognitive outcome measure reported by at least two different research groups in the literature was collected. Outcome measures were divided into 4 broad categories: executive function, language, memory, and miscellaneous. To account for the paradigmatic variability in the literature, we undertook a three-tier analysis system; each with less-stringent inclusion criteria than the prior. Standard mean difference values with 95% CIs were generated for included studies and pooled for each analysis. RESULTS Of the 59 analyses conducted, tDCS was found to not have a significant effect on any - regardless of inclusion laxity. This includes no effect on any working memory outcome or language production task. CONCLUSION Our quantitative review does not support the idea that tDCS generates a reliable effect on cognition in healthy adults. Reasons for and limitations of this finding are discussed. This work raises important questions regarding the efficacy of tDCS, state-dependency effects, and future directions for this tool in cognitive research.
Collapse
|