1
|
Liang J, Bian M, Chen H, Yan K, Li Z, Qin Y, Wang D, Zhu C, Huang W, Yi L, Sun J, Mao Y, Hao Z. Gradient boosting DD-MLP Net: An ensemble learning model using near-infrared spectroscopy to classify after-stroke dyskinesia degree during exercise. JOURNAL OF BIOPHOTONICS 2023; 16:e202300029. [PMID: 37280169 DOI: 10.1002/jbio.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
This study aims to develop an automatic assessment of after-stroke dyskinesias degree by combining machine learning and near-infrared spectroscopy (NIRS). Thirty-five subjects were divided into five stages (healthy, patient: Brunnstrom stages 3, 4, 5, 6). NIRS was used to record the muscular hemodynamic responses from bilateral femoris (biceps brachii) muscles during passive and active upper (lower) limbs circular exercise. We used the D-S evidence theory to conduct feature information fusion and established a Gradient Boosting DD-MLP Net model, combining the dendrite network and multilayer perceptron, to realize automatic dyskinesias degree evaluation. Our model classified the upper limb dyskinesias with high accuracy: 98.91% under the passive mode and 98.69% under the active mode, and classified the lower limb dyskinesias with high accuracy: 99.45% and 99.63% under the passive and active modes, respectively. Our model combined with NIRS has great potential in monitoring the after-stroke dyskinesias degree and guiding rehabilitation training.
Collapse
Affiliation(s)
- Jianbin Liang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Minjie Bian
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hucheng Chen
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Kecheng Yan
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Zhihao Li
- School of Medicine, Foshan University, Foshan, China
| | - Yanmei Qin
- School of Medicine, Foshan University, Foshan, China
| | - Dongyang Wang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Chunjie Zhu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Wenzhu Huang
- The Fifth Affiliated Hospital of Foshan, Foshan University, Foshan, China
| | - Li Yi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China
| | - Yurong Mao
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhifeng Hao
- College of Science, Shantou University, Shantou, China
| |
Collapse
|
2
|
Carswell C, Rea PM. What the Tech? The Management of Neurological Dysfunction Through the Use of Digital Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1317:131-145. [PMID: 33945135 DOI: 10.1007/978-3-030-61125-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Worldwide, it is estimated that millions of individuals suffer from a neurological disorder which can be the result of head injuries, ischaemic events such as a stroke, or neurodegenerative disorders such as Parkinson's disease (PD) and multiple sclerosis (MS). Problems with mobility and hemiparesis are common for these patients, making daily life, social factors and independence heavily affected. Current therapies aimed at improving such conditions are often tedious in nature, with patients often losing vital motivation and positive outlook towards their rehabilitation. The interest in the use of digital technology in neuro-rehabilitation has skyrocketed in the past decade. To gain insight, a systematic review of the literature in the field was conducting following the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) guidelines for three categories: stroke, Parkinson's disease and multiple sclerosis. It was found that the majority of the literature (84%) was in favour of the use of digital technologies in the management of neurological dysfunction; with some papers taking a "neutral" or "against" standpoint. It was found that the use of technologies such as virtual reality (VR), robotics, wearable sensors and telehealth was highly accepted by patients, helped to improve function, reduced anxiety and make therapy more accessible to patients living in more remote areas. The most successful therapies were those that used a combination of conventional therapies and new digital technologies.
Collapse
Affiliation(s)
- Caitlin Carswell
- Anatomy Facility, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Paul M Rea
- School of Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Cyma-Wejchenig M, Tarnas J, Marciniak K, Stemplewski R. The Influence of Proprioceptive Training with the Use of Virtual Reality on Postural Stability of Workers Working at Height. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3731. [PMID: 32635288 PMCID: PMC7374483 DOI: 10.3390/s20133731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
The aim of the study was to assess the impact of proprioceptive training with the use of virtual reality (VR) on the level of postural stability of high-altitude workers. Twenty-one men working at height were randomly assigned to the experimental group (EG) with training (n = 10) and control group (CG) without training (n = 11). Path length of the displacement of the center of pressure (COP) signal and its components in the anteroposterior and medial-lateral directions were measured with use of an AccuGaitTM force plate before and after intervention (6 weeks, 2 sessions × 30 min a week). Tests were performed at two different platform heights, with or without eyes open and with or without a dual task. Two-way ANOVA revealed statistically significant interaction effects for low-high threat, eyes open-eyes closed, and single task-dual task. Post-training values of average COP length were significantly lower in the EG than before training for all analyzed parameters. Based on these results, it can be concluded that the use of proprioceptive training with use of VR can support, or even replace, traditional methods of balance training.
Collapse
|
4
|
Hsiao PC, Wang YC, Huang YJ, Hsueh IP, Chen MH, Hsieh CL. Correlations between subjective rating and objective assessment of balance function in individuals with stroke. Disabil Rehabil 2020; 43:3757-3763. [PMID: 32372705 DOI: 10.1080/09638288.2020.1751313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To examine the relationships among therapist-reported, patient-reported, and objective assessment scores of balance function.Methods: Inpatients with stroke and occupational therapists were recruited. The objective balance scores were measured using the Balance Computerized Adaptive Testing (Balance CAT) system. The therapist and patient-reported scores were evaluated using a visual analogue scale (VAS) and Likert-type scale.Results: Eighty-eight patients and 16 therapists participated. The correlations (r= 0.64 and 0.65; R-squared about 0.42 at baseline and follow-up assessments, respectively) between the therapist-reported VAS scores and the Balance CAT system were larger than those (r = 0.31 and 0.21) between the patient-reported VAS scores and the Balance CAT system. Low correlations (r = 0.27 and 0.26 for VAS and Likert-type scores, respectively) were found between the therapist-reported and patient-reported change scores. Low correlations (r = 0.12-0.17) were found between the change scores of therapist- and patient-reported ratings and those of the Balance CAT system.Conclusions: The therapists' judgments explained <50% of variance of the Balance CAT system scores. Neither therapist-reported nor patient-reported change scores reflected the changes demonstrated by the objective assessments. Further studies are warranted to confirm our findings.Implications for RehabilitationNeither therapist- nor patient-reported balance function and change could effectively reflect the scores resulting from objective assessments.The routine use of objective balance assessments should not be replaced by therapists' subjective judgments.Communications regarding the balance function measured by objective assessments between therapists and patients can help patients to better understand their balance function and progress.
Collapse
Affiliation(s)
- Pei-Chi Hsiao
- Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan, Taiwan
| | - Yi-Ching Wang
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jing Huang
- Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - I-Ping Hsueh
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsiang Chen
- Department of Occupational Therapy, Chung Shan Medical University, Taichung, Taiwan.,Occupational Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ching-Lin Hsieh
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
5
|
Ballantyne R, Rea PM. A Game Changer: 'The Use of Digital Technologies in the Management of Upper Limb Rehabilitation'. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1205:117-147. [PMID: 31894574 DOI: 10.1007/978-3-030-31904-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hemiparesis is a symptom of residual weakness in half of the body, including the upper extremity, which affects the majority of post stroke survivors. Upper limb function is essential for daily life and reduction in movements can lead to tremendous decline in quality of life and independence. Current treatments, such as physiotherapy, aim to improve motor functions, however due to increasing NHS pressure, growing recognition on mental health, and close scrutiny on disease spending there is an urgent need for new approaches to be developed rapidly and sufficient resources devoted to stroke disease. Fortunately, a range of digital technologies has led to revived rehabilitation techniques in captivating and stimulating environments. To gain further insight, a meta-analysis literature search was carried out using the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) method. Articles were categorized and pooled into the following groups; pro/anti/neutral for the use of digital technology. Additionally, most literature is rationalised by quantitative and qualitative findings. Findings displayed, the majority of the inclusive literature is supportive of the use of digital technologies in the rehabilitation of upper extremity following stroke. Overall, the review highlights a wide understanding and promise directed into introducing devices into a clinical setting. Analysis of all four categories; (1) Digital Technology, (2) Virtual Reality, (3) Robotics and (4) Leap Motion displayed varying qualities both-pro and negative across each device. Prevailing developments on use of these technologies highlights an evolutionary and revolutionary step into utilizing digital technologies for rehabilitation purposes due to the vast functional gains and engagement levels experienced by patients. The influx of more commercialised and accessible devices could alter stroke recovery further with initial recommendations for combination therapy utilizing conventional and digital resources.
Collapse
Affiliation(s)
- Rachael Ballantyne
- Anatomy Facility, Thomson Building, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paul M Rea
- Anatomy Facility, Thomson Building, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|