1
|
Shao X, He L, Liu Y. The effects of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents: a meta-analysis. Neural Regen Res 2025; 20:1513-1520. [PMID: 39075917 PMCID: PMC11624860 DOI: 10.4103/nrr.nrr-d-23-01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 01/27/2024] [Indexed: 07/31/2024] Open
Abstract
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the PubMed, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using ReviewManager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference (MD; before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants (60 children and 471 adolescents, 10.9-16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I2 test provided by ReviewManager software. The meta-analysis showed that there was no heterogeneity among the studies (P = 0.67, I2 = 0.00%). The combined effect of the interventions was significant (MD = 2.88, 95% CI: 1.53-4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This meta-analysis was registered at PROSPERO (registration ID: CRD42023439408).
Collapse
Affiliation(s)
- Xueyun Shao
- Physical Education School, Shenzhen University, Shenzhen, Guangdong Province, China
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| | - Longfei He
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| | - Yangyang Liu
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Lee DH, Cao D, Moon Y, Chen C, Liu NK, Xu XM, Wu W. Enhancement of motor functional recovery in thoracic spinal cord injury: voluntary wheel running versus forced treadmill exercise. Neural Regen Res 2025; 20:836-844. [PMID: 38886956 PMCID: PMC11433897 DOI: 10.4103/nrr.nrr-d-23-01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00028/figure1/v/2024-06-17T092413Z/r/image-tiff Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group (10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
Collapse
Affiliation(s)
- Do-Hun Lee
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dan Cao
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Younghye Moon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
López-Ojeda W, Hurley RA. Myokines and the Brain: A Novel Neuromuscular Endocrine Loop. J Neuropsychiatry Clin Neurosci 2025; 37:A4-4. [PMID: 39812655 DOI: 10.1176/appi.neuropsych.20240173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center and the Research and Academic Affairs Service Line, W. G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center and the Research and Academic Affairs Service Line, W. G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C
| |
Collapse
|
4
|
Yadav SK, Dhuri K, Gamiotea-Turro D, Cormier MK, Patel V, Yadawa AK, Pathuri M, Bahal R, Verma R. Exploring the therapeutic potential of sγPNA-141: Pharmacodynamics and mechanistic insights during ischemic stroke recovery. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102355. [PMID: 39507400 PMCID: PMC11539414 DOI: 10.1016/j.omtn.2024.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
MicroRNA-141-3p plays a detrimental role in the pathology of ischemic stroke, presenting a new target for stroke treatment. This study introduces and validates a novel class of peptide nucleic acid (PNA)-based miR-141-3p inhibitors known as serine gamma PNA-141 (sγPNA-141) for ischemic stroke treatment. After synthesis, physicochemical characterization, and nanoparticle encapsulation of sγPNA-141, we compared its safety and efficacy with traditional phosphorothioate- and regular PNA-based anti-miR-141-3p (PNA-141) in vitro, followed by detailed in vivo and ex vivo efficacy testing of sγPNA-141 for treating ischemic stroke using a mouse model. sγPNA-141 demonstrated higher affinity and specificity toward miR-141-3p, and when applied post-stroke, demonstrated decreased brain damage, enhanced neuroprotective proteins, reduced tissue atrophy, swift improvement in functional deficits, and improvement in learning and memory during long-term recovery. Overall, our data show sγPNA-141 has neuroprotective and neuro-rehabilitative effects during stroke recovery. Furthermore, we demonstrated sγPNA-141's effects are mediated by the TGF-β-SMAD2/3 pathway. In summary, the present findings suggest that sγPNA-141 could be a potentially novel and effective therapeutic modality for the treatment of ischemic stroke.
Collapse
Affiliation(s)
| | - Karishma Dhuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | | | | | - Vraj Patel
- Department of Neuroscience, UConn Health, Farmington, CT 06032, USA
| | | | - Mounika Pathuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Rajkumar Verma
- Department of Neuroscience, UConn Health, Farmington, CT 06032, USA
| |
Collapse
|
5
|
Nitz ACR, Ferreira JP, Ribeiro EM, da Rocha JA, Andrade Toscano CV, Campos MJ. Effects of a 12-Week Mixed-Method Physical Exercise Program on Physical Fitness, Stress, Anxiety, and Quality of Life in Adolescents with Cerebral Palsy: A Case Series Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1257. [PMID: 39457222 PMCID: PMC11506076 DOI: 10.3390/children11101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND/OBJECTIVES Although the health benefits related to physical exercise for adolescents with cerebral palsy (CP) have been recognized, studies indicate that individuals with CP at school age are less involved in physical activities than their typical peers and are twice as likely to engage in sedentary behaviors. Therefore, our study aims to investigate the effects of a physical exercise program on physical fitness, stress, anxiety, and quality-of-life variables. METHODS A total of 15 teenagers with ambulatory CP (n = 8 boys, n = 7 girls, between 12 and 18 years old; M = 14.35; SD = 1.76) completed a 12-week program based on a mixed-method approach with face-to-face and live online activities. The outcome measures were physical fitness, stress, anxiety, and quality of life. RESULTS The 12-week exercise program resulted in gains in muscular strength, flexibility, and aerobic endurance tests, characterized by an increase in average walking speed and average VO2 max. There was also a significant change in the perception of emotional states of depression, anxiety, and stress reported by the participants. CONCLUSIONS The program proved to be effective in physical fitness tests and perception of emotional states. Given the positive effects produced by the program, its design appears to meet the demands of adolescents with cerebral palsy.
Collapse
Affiliation(s)
- Alexandrina Cavalcante Rodrigues Nitz
- Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal;
- Sarah Network of Hospitals of Rehabilitation, Fortaleza 60861-634, Brazil; (E.M.R.); (J.A.d.R.)
| | - José Pedro Ferreira
- Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal;
| | - Elaine Maria Ribeiro
- Sarah Network of Hospitals of Rehabilitation, Fortaleza 60861-634, Brazil; (E.M.R.); (J.A.d.R.)
| | | | - Chrystiane Vasconcelos Andrade Toscano
- Physical Exercise Research Project for People with Autism Spectrum Disorder (PEFaut), Institute of Physical Education and Sport, Federal University of Alagoas (UFAL), Maceio 57072-970, Brazil;
| | - Maria João Campos
- Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal;
| |
Collapse
|
6
|
Wunram HL, Kasparbauer AM, Oberste M, Bender S. [Movement as a Neuromodulator: How Physical Activity Influences the Physiology of Adolescent Depression]. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2023; 52:77-93. [PMID: 37851436 DOI: 10.1024/1422-4917/a000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Movement as a Neuromodulator: How Physical Activity Influences the Physiology of Adolescent Depression Abstract: In the context of adolescent depression, physical activity is becoming increasingly recognized for its positive effects on neuropathology. Current scientific findings indicate that physical training affects the biological effects of depression during adolescence. Yet the pathophysiology of adolescent depression is not yet fully understood. Besides psychosocial and genetic influences, various neurobiological factors are being discussed. One explanation model describes a dysfunction of the hypothalamus-pituitary-adrenal axis (HPA axis) with a sustained elevation in cortisol concentration. Recent studies highlight neuroimmunological processes and a reduced concentration of growth factors as causative factors. These changes appear to lead to a dysregulation of the excitation and inhibition balance of the cerebral cortex as well as to cerebral morphological alterations. Regular physical training can potentially counteract the dysregulation of the HPA axis and normalize cortisol levels. The release of proinflammatory cytokines is inhibited, and the expression of growth factors involved in adult neurogenesis is stimulated. One should ensure the synergistic interaction of biological and psychosocial factors when designing the exercise schedule (endurance or strength training, group or individual sports, frequency, duration, and intensity). Addressing these open questions is essential when integrating physical activity into the guidelines for treating depressive disorders in children and adolescents.
Collapse
Affiliation(s)
- Heidrun Lioba Wunram
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Kinderklinik Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Geteilte Erstautorenschaft
| | - Anna-Maria Kasparbauer
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Geteilte Erstautorenschaft
| | - Max Oberste
- Institut für Medizinische Statistik und Bioinformatik, Universität zu Köln, Deutschland
| | - Stephan Bender
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
| |
Collapse
|
7
|
Bhattacharya P, Chatterjee S, Roy D. Impact of exercise on brain neurochemicals: a comprehensive review. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-022-01030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
8
|
Andrzejewski M, Konefał M, Podgórski T, Pluta B, Chmura P, Chmura J, Marynowicz J, Melka K, Brazaitis M, Kryściak J. How training loads in the preparation and competitive period affect the biochemical indicators of training stress in youth soccer players? PeerJ 2022; 10:e13367. [PMID: 35539014 PMCID: PMC9080429 DOI: 10.7717/peerj.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Background Physical fitness optimization and injury risk-reducing require extensive monitoring of training loads and athletes' fatigue status. This study aimed to investigate the effect of a 6-month training program on the training-related stress indicators (creatine kinase - CK; cortisol - COR; serotonin - SER; brain-derived neurotrophic factor - BDNF) in youth soccer players. Methods Eighteen players (17.8 ± 0.9 years old, body height 181.6 ± 6.9 cm, training experience 9.7 ± 1.7 years) were blood-tested four times: at the start of the preparation period (T0), immediately following the preparation period (T1), mid-competitive period (T2), and at the end of the competitive period (T3). CK activity as well as concentrations of serum COR, SER and BDNF were determined. Training loads were recorded using a session rating of perceived exertion (sRPE). Results Statistical analyzes revealed significant effects for all biochemical parameters in relation to their time measurements (T0, T1, T2, T3). The statistical analyzes of sRPE and differences of biochemical parameters in their subsequent measurements (T0-T1, T1-T2, T2-T3) also demonstrated significant effects observed for all variables: sRPE (HKW = 13.189 (df = 2); p = 0.00), COR (HKW = 9.261 (df = 2); p = 0.01), CK (HKW = 12.492 (df = 2); p = 0.00), SER (HKW = 7.781 (df = 2); p = 0.02) and BDNF (HKW = 15.160 (df = 2); p < 0.001). Discussion In conclusion, it should be stated that the most demanding training loads applied in the preparation period (highest sRPE values) resulted in a significant increase in all analyzed biochemical training stress indicators. The reduction in the training loads during a competitive period and the addition of recovery training sessions resulted in a systematic decrease in the values of the measured biochemical indicators. The results of the study showed that both subjective and objective markers, including training loads, are useful in monitoring training stress in youth soccer players.
Collapse
Affiliation(s)
- Marcin Andrzejewski
- Department of Methodology of Recreation, Poznań University of Physical Education, Poznań, Poland
| | - Marek Konefał
- Department of Biological and Motor Sport Bases, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Tomasz Podgórski
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Beata Pluta
- Department of Methodology of Recreation, Poznań University of Physical Education, Poznań, Poland
| | - Paweł Chmura
- Department of Team Games, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Jan Chmura
- Department of Biological and Motor Sport Bases, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Jakub Marynowicz
- Department of Theory and Methodology of Team Sport Games, Poznań University of Physical Education, Poznań, Poland
| | - Kamil Melka
- Institute of Mathematics, University of Wrocław, Wrocław, Poland
| | - Marius Brazaitis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | - Jakub Kryściak
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
9
|
Prior short-term exercise prevents behavioral and biochemical abnormalities induced by single prolonged stress in a rat model of posttraumatic stress disorder. Behav Brain Res 2022; 428:113864. [DOI: 10.1016/j.bbr.2022.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022]
|
10
|
Wang YH, Zhou HH, Luo Q, Cui S. The effect of physical exercise on circulating brain-derived neurotrophic factor in healthy subjects: A meta-analysis of randomized controlled trials. Brain Behav 2022; 12:e2544. [PMID: 35274832 PMCID: PMC9014996 DOI: 10.1002/brb3.2544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To investigate how physical exercise (PE) would affect brain-derived neurotrophic factor (BDNF) in randomized controlled trials (RCTs) of healthy subjects. METHODS Seven databases (PubMed, Web of Science, Cochrane, Embase, PsycINFO, CINAHL, SPORTDiscus) were searched for RCTs assessing the effects of PE on serum and/or plasma BDNF until December 18, 2021. Meta-analysis was performed by random-effects method with standardized mean difference (SMD) and 95% confidence intervals (CIs). Subgroup analysis and meta-regression analysis were conducted to investigate the potential source of heterogeneity. Trim and fill method, and leave-one-out cross-validation were conducted. RESULTS Eventually, 21 articles, involving 809 participants, were included in the meta-analysis. Overall, both acute (5 trials, SMD: 1.20, 95% CI: 0.36 to 2.04, p = .005) and long-term (17 trials, SMD: 0.68, 95% CI: 0.27 to 1.08, p = .001) PE had significant positive effects on BDNF levels. Via subgroup analysis, studies of long-term PE with larger sample sizes, female participants, participants older than 60 years, and aerobic exercise contributed to a more pronounced improvement on BDNF levels than that found when all studies were combined. CONCLUSION Both acute and long-term PE had significant positive effects on circulating BDNF in healthy subjects. This review suggests that acute exercise and long-term aerobic exercise are powerful forms of PE to enhance neurotrophic effect, especially for female subjects or subjects over 60 years.
Collapse
Affiliation(s)
- Ya-Hai Wang
- Physical Education College, Yunnan Normal University, Kunming, China
| | - Huan-Huan Zhou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qiang Luo
- Department of Orthopedics and Traumatology, Pu'er Hospital of Traditional Chinese Medicine, Pu'er, China
| | - Sidong Cui
- Physical Education College, Yunnan Normal University, Kunming, China
| |
Collapse
|
11
|
Physical Exercise and Brain-Derived Neurotrophic Factor Concentration in Children and Adolescents: A Systematic Review With Meta-Analysis. Pediatr Exerc Sci 2022; 34:44-53. [PMID: 34689125 DOI: 10.1123/pes.2020-0207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 07/17/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To systematically review the literature on the relationship between physical activity and the effect of physical training on brain-derived neurotrophic factor (BDNF) concentrations in children and adolescents. METHODS The searches were conducted in the databases: PubMed, ScienceDirect, Web of Science, Scopus, SPORTDiscus, Latin American and Caribbean Center for Science Information of Health, and SciELO. All original studies that analyzed the relationship between the practice of physical activity and the effect of physical training on plasma and serum BDNF concentrations in children and adolescents were included. The standardized mean difference (SMD), correlation coefficient (r), and 95% confidence interval were calculated. RESULTS Eleven studies were selected, totaling 1424 children and adolescents. Cross-sectional studies indicated a significant inverse relationship between physical activity and BDNF concentrations in boys (r = -.117 [-.222, -.009]; P = .033), but not in girls (P = .230). Adolescent athletes tend to have lower serum, but higher plasma BDNF concentrations than sedentary ones (SMD = -0.677 [0.188]; P < .001). An increase in serum BDNF was observed after physical training (SMD = 0.437 [0.183]; P = .017), with no effect in the control group (SMD = 0.235 [0.193]; P = .225). CONCLUSIONS Adolescent athletes tend to show lower serum, but higher plasma BDNF concentrations compared with sedentary individuals. Furthermore, physical training seems to increase serum BDNF concentrations in sedentary adolescents to a small extent.
Collapse
|
12
|
Fleitas JC, Hammuod SFP, Kakuta E, Loreti EH. A Meta-analysis of the effects of physical exercise on peripheral levels of a brain-derived neurotrophic factor in the elderly. Biomarkers 2022; 27:205-214. [DOI: 10.1080/1354750x.2021.2024602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | - Eduardo Henrique Loreti
- Department of Physiotherapy. University Center of Grande Dourados.
- Federal University of Grande Dourados
| |
Collapse
|
13
|
Aseem A, Chaudhry N, Hussain ME. Effect of moderate intensity aerobic exercise training on electrophysiological and biochemical correlates of sleep. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Differential effects of ergometer-cycling and Whole-Body-Vibration training on serological BDNF and IGF-1 in the treatment of adolescent depression - is there an impact of BDNFp.Val66Met variants? Physiol Behav 2021; 241:113596. [PMID: 34536433 DOI: 10.1016/j.physbeh.2021.113596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pathogenesis and treatment of adolescent depression may be influenced by growth-factors, including brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1). We investigated, if treatment response to two different add-on exercise-therapies in juvenile depression, differ in the changes of BDNF and IGF-1 serology. A subgroup analysis for genetic variations in BDNF p.Val66Met-variants was added. METHODS Included subjects in the study (N = 64), aged 13 to 17 years, were diagnosed with major depression, controls received inpatient treatment as usual (TAU). Intervention groups performed as add-on to TAU two different forms of exercise-therapy: endurance ergometer cycling (EC) and muscle strengthening whole body vibration (WBV). We expected both exercise-forms to increase BDNF and IGF-1 serology and by this pathway to improve depression scores significantly stronger than the control group. RESULTS None of the experimental groups showed significant changes in BDNF between measurement time points. However, after 6 weeks exercise, BDNF of both intervention groups were significantly higher compared to TAU,. The IGF-1 increase after 6 weeks intervention was significant for EC only. No correlations of BDNF and IGF-1 to depression scores were found. Group analysis in BDNF p.Val66Met variants showed a trend for better response in depression scores to exercise-treatment for the Val66Val group. LIMITATIONS A small sample size, the non-randomized controls and the neglect of psychosocial factors have to be considered as limitations. CONCLUSIONS Endurance and muscle strengthening trainings seem to influence serological BDNF and IGF-1 differentially. However, the changes in growth factors did not correlate to the decreases in depression scores. BDNF p.Val66Val variant seems to be more receptive for exercise treatment. Identifying biomarkers (growth factors, genetic variants) in adolescent depression could help to develop tailored treatment strategies.
Collapse
|
15
|
Bi X, Wang J. EFFECTS OF EXERCISE ON GLUCOSE AND LIPID METABOLISM IN ELDERLY PATIENTS. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127072021_0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Metabolic syndrome is a condition in which multiple cardiovascular metabolic risk factors gather in the body. Objective: To explore the effects of exercise prescription on glucose and lipid metabolism in elderly patients with metabolic syndrome. Methods: A total of 85 elderly people were selected from a pension community. The influencing factors of physical activity were analyzed by the Pearson correlation analysis method, Mann-Whitneyu test and Kruskal-Wallish test. Finally, we quantitatively analyzed the influence and path of each factor on the physical activity of the elderly. Results: Among the 85 elderly people in nursing homes, 2 cases (1.1%) had a high level of physical activity, 70 cases (38.9%) had a medium level of physical activity, and 51 cases (60.0%) had a low level of physical activity. Conclusions: The improvement of glucose and lipid metabolism and healthy body fitness with the prescription of exercises of high oxygen + low resistance and that of exercises of high resistance + low oxygen is better than that with the prescription of exercises of full oxygen and full resistance. The improvement of sleep quality with the prescription of exercise with high oxygen and low resistance was better than that of exercise with complete oxygen, complete resistance and high resistance and low oxygen. Level of evidence II; Therapeutic studies - investigation of treatment results.
Collapse
Affiliation(s)
- Xianchao Bi
- Changzhou Institute of Industry Technology, China
| | | |
Collapse
|
16
|
García-Suárez PC, Rentería I, Moncada-Jiménez J, Fry AC, Jiménez-Maldonado A. Acute Systemic Response Of BDNF, Lactate and Cortisol to Strenuous Exercise Modalities in Healthy Untrained Women. Dose Response 2020; 18:1559325820970818. [PMID: 33354170 PMCID: PMC7734519 DOI: 10.1177/1559325820970818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/31/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Acute bouts of intense exercise increase lactate concentration, which in turn stimulates brain-derived neurotrophic factor (BDNF) production. Cortisol released during intense exercise might inhibit BDNF synthesis. This study examined the acute effects of 2 protocols of strenuous exercise on serum BDNF. Seventeen physically-active healthy females (Age = 20.0 ± 0.9 yr., BMI = 23.0 ± 2.6 kg/m2) performed a strenuous cycle-ergometer graded exercise test (GXT) and a high-intensity interval training session (HIIT). Serum BDNF, serum cortisol, cortisol: BDNF ratio and blood lactate (BLa) were recorded at baseline and immediately following exercise. Although non-statistically significant, the HIIT session elicited a higher magnitude of change from baseline for BDNF (d = 0.17) and cortisol (d = 1.18) than after the GXT (d = -0.26, and d = 0.82, respectively). An interaction was found between GXT and HIIT trials and measurements on BLa levels, with higher post-exertion values after HIIT than after GXT (p < 0.0001, η2 = 0.650, 95%CI = 2.2, 5.2). The higher BLa levels did not raise circulating BDNF. The elevated cortisol levels may have overcome the effects of lactate on BDNF. However, the higher BLa induced by HIIT suggest that interval exercise modality on the long-term could be a feasible intervention to increase circulating peripheral BDNF, at least in untrained healthy women.
Collapse
Affiliation(s)
| | - Iván Rentería
- Facultad de Deportes Campus Ensenada, Universidad Autónoma de Baja California, Ensenada, México
| | - José Moncada-Jiménez
- Human Movement Sciences Research Center, University of Costa Rica, San José, Costa Rica
| | - Andrew C Fry
- Department of Health, Sport, & Exercise Sciences, The University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|
17
|
Martínez-Díaz IC, Escobar-Muñoz MC, Carrasco L. Acute Effects of High-Intensity Interval Training on Brain-Derived Neurotrophic Factor, Cortisol and Working Memory in Physical Education College Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218216. [PMID: 33172145 PMCID: PMC7664431 DOI: 10.3390/ijerph17218216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
High-intensity interval training (HIIT) is considered one of the most effective methods for improving cardiorespiratory and metabolic functions. However, it is necessary to clarify their effects on neurophysiological responses and coginitive functioning. Thus, this study aimed to determine the effects of an acute bout of HIIT on neurocognitive and stress-related biomarkers and their association with working memory (WM) capacity in healthy young adults. Twenty-five male college students performed a single bout of HIIT consisting of 10 × 1 min of cycling at their VO2 peak power output. Plasma Brain-Derived Neurotrophic Factor (BDNF) and cortisol (CORT) levels, and WM (Digit Span Test (DST)), were assessed pre-, post- and 30 min post-intervention. Significant post-exercise increases in circulating BDNF and CORT levels were observed coinciding with the highest DST performance; however, no statistical associations were found between cognitive and neurophysiological variables. Moreover, DST scores obtained 30 min after exercise remained higher than those assessed at pre-exercise. In conclusion, the stress induced by a single bout of HIIT induces a remarkable response of BDNF and CORT boosting WM capacity in healthy young males. Future research should clarify the association between cognitive and neurobiological markers during intense exercise stimulation.
Collapse
Affiliation(s)
| | | | - Luis Carrasco
- Department of Physical Education and Sport, University of Seville, E-41013 Seville, Spain;
- Correspondence: ; Tel.: +34-955-420-465
| |
Collapse
|
18
|
Effect of Physical Activity on Cognitive Function and Neurogenesis: Roles of BDNF and Oxidative Stress. ACTA ACUST UNITED AC 2020. [DOI: 10.5812/thrita.109723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context: Cognitive disorders are one of the most common neurological problems that can be caused by lifestyle patterns, especially sedentary lifestyle, poor nutrition, exposure to a variety of toxins or diseases. Evidence Acquisition: There are various strategies recommended for the prevention and treatment of these disorders, including drug therapy, psychological therapy, dietary pattern changes, and physical activity. Results: It seems that physical activity with biological mechanisms can have beneficial effects on the central nervous system and improve cognitive function, including enhanced learning and memory, as well as reduced depression and anxiety. Conclusions: Of the major mechanisms that physical activity can affect cognitive function include increased neurogenic factors, decreased oxidative stress, decreased inflammatory mediators, and mitochondrial biogenesis. Therefore, it is recommended that people with cognitive impairments can use physical activity as an appropriate strategy to prevent and treat cognitive impairment problems.
Collapse
|
19
|
de Azevedo KPM, de Oliveira VH, de Medeiros GCBS, Mata ÁNDS, García DÁ, Martínez DG, Leitão JC, Knackfuss MI, Piuvezam G. The Effects of Exercise on BDNF Levels in Adolescents: A Systematic Review with Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176056. [PMID: 32825341 PMCID: PMC7503913 DOI: 10.3390/ijerph17176056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
The aim of this study was to analyze the evidence available in the literature about the effects of exercise on brain-derived neurotrophic factor levels in adolescents. The literature searches were conducted in PubMed, Embase, Scopus, ScienceDirect, Web of Science, SportDiscus, the Cochrane Central Register of Controlled Trials (CENTRAL) and CINAHL. Randomized controlled trials and non-randomized controlled trials performed with adolescents (10–19 years) who underwent different exercise programs and who evaluated BDNF levels before and after the intervention were included. We included six studies, four RCTs and two non-RCTs in the systematic review with a total of 407 adolescents. In two randomized trials and one non-RCT, the intervention groups showed significant improvements in BDNF levels compared with the control group. The results presented in the meta-analysis indicate that despite the positive effect in favor of the intervention, there were no significant differences (standardized mean difference 0.28 ng/mL, 95% confidence interval −0.28 to 0.85; p = 0.32, I² = 0%). The results presented in our review indicate that aerobic exercise programs practiced in moderate- or high-intensity are promising strategies to increase BDNF levels in adolescents. However, further studies are required to support this finding.
Collapse
Affiliation(s)
- Kesley Pablo Morais de Azevedo
- Post-Graduate Program in Public Health, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil; (V.H.d.O.); (G.C.B.S.d.M.); (Á.N.d.S.M.); (G.P.)
- Correspondence: ; Tel.: +55-084-98738-1422
| | - Victor Hugo de Oliveira
- Post-Graduate Program in Public Health, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil; (V.H.d.O.); (G.C.B.S.d.M.); (Á.N.d.S.M.); (G.P.)
| | | | - Ádala Nayana de Sousa Mata
- Post-Graduate Program in Public Health, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil; (V.H.d.O.); (G.C.B.S.d.M.); (Á.N.d.S.M.); (G.P.)
| | - Daniel Ángel García
- Department of Sociosanitary Sciences, University of Murcia, 30100 Murcia, Spain;
| | | | - José Carlos Leitão
- Center for Research in Sport, Health and Human Development, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| | - Maria Irany Knackfuss
- Post-Graduate Program in Health and Society, State University of Rio Grande do Norte (UERN), 59610-210 Mossoró, Brazil;
| | - Grasiela Piuvezam
- Post-Graduate Program in Public Health, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil; (V.H.d.O.); (G.C.B.S.d.M.); (Á.N.d.S.M.); (G.P.)
| |
Collapse
|
20
|
Barzroodi Pour M, Bayat M, Golab F, Eftekharzadeh M, Katebi M, Soleimani M, Karimzadeh F. The effect of exercise on GABA signaling pathway in the model of chemically induced seizures. Life Sci 2019; 232:116667. [PMID: 31326567 DOI: 10.1016/j.lfs.2019.116667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
Abstract
AIMS Gamma amino butyric acid (GABA) imbalance plays a critical role in most neurological disorders including epilepsy. This study assessed the involvement of mild exercise on GABA imbalance following by seizure induction in rats. MAIN METHODS Seizure was induced by pentylentetrazole (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), co-seizure-induced exercise (Co-SI EX) and Pre-SI EX groups. In the Co-SI EX group, doing exercise and seizure induction was carried out during four weeks. Animals in the Pre-SI EX group exercised in week 1 to week 8 and seizures were induced in week 5 to week 8. Seizure properties, neural viability and expressions of glutamic acid decarboxylase 65 (GAD65) and GABAA receptor α1 in the hippocampus were assessed. KEY FINDINGS Seizure severity reduced and latency increased in the Co-SI EX and Pre-SI EX groups compared to seizure group. The mean number of dark neurons decreased in all exercise groups compared to seizure group in both CA1 and CA3 areas. The gene level of GAD65 and GABAA receptor α1 was highly expressed in the Co-SI EX group in the hippocampal area. Distribution of GAD65 in the both CA1 and CA3 areas increased in the EX and Co-SI EX groups. GABAA receptor α1 was up-regulated in the CA3 area of Co-SI EX group and down-regulated in the CA1 and CA3 areas of Pre-SI EX group. SIGNIFICANCE These findings suggest that exercise develop anti-epileptic as well as neuroprotective effects by modulating of GABA disinhibition.
Collapse
Affiliation(s)
- Mitra Barzroodi Pour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Bayat
- Department of Anatomy, Arak University of Medical Sciences, Arak, Iran
| | - Freshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
de Azevedo KPM, de Oliveira Segundo VH, de Medeiros GCBS, de Sousa Mata ÁN, García DÁ, de Carvalho Leitão JCG, Knackfuss MI, Piuvezam G. Effects of exercise on the levels of BDNF and executive function in adolescents: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e16445. [PMID: 31305474 PMCID: PMC6641795 DOI: 10.1097/md.0000000000016445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKOGROUND Evidence available in the literature suggests that physical exercise increases the release of brain-derived neurotrophic factor (BDNF) in humans and may possibly be related to improvements in executive function. However, studies of this phenomenon in adolescents are still scarce. The objective of this work is to describe the protocol for a systematic review (SR) and meta-analysis of interventional studies aiming to determine the effect of physical exercise on BDNF levels and executive function in adolescents. METHODS This protocol is guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) and by the Cochrane Handbook of Systematic Reviews of Interventions. The databases to be searched are PubMed, EMBASE, Scopus, ScienceDirect, Web of Science, SPORTDiscus, the Cochrane Central Register of Controlled Trials (CENTRAL), and CINAHL. Interventional studies conducted on adolescents with different exercise protocols and evaluations of BDNF levels and executive function in pre- and post-intervention periods will be included in the systematic review. The characteristics of the studies, participants, and main results will be described, then the evaluation of the risk of biases and the level of evidence obtained by the protocol will be assessed. The selection of studies, data extraction, and evaluation of the methodological quality will be performed by 2 experienced reviewers independently. CONCLUSION The systematic review will present the effects of the practice of physical exercises on the BDNF and executive function levels. The results will strengthen the interventions with the focus on the brain health of adolescents through general orientations and the evidences described shall direct future research. PROSPERO REGISTRATION NUMBER CRD42018110683.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Irany Knackfuss
- Post-Graduate program in health and society, University of the State of Rio Grande do Norte (UERN), Mossoró/RN, Brazil
| | - Grasiela Piuvezam
- Department of Public Health, Federal University of Rio Grande do Norte, Natal/RN
| |
Collapse
|
22
|
Stojan R, Voelcker-Rehage C. A Systematic Review on the Cognitive Benefits and Neurophysiological Correlates of Exergaming in Healthy Older Adults. J Clin Med 2019; 8:jcm8050734. [PMID: 31126052 PMCID: PMC6571688 DOI: 10.3390/jcm8050734] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Human aging is associated with structural and functional brain deteriorations and a corresponding cognitive decline. Exergaming (i.e., physically active video-gaming) has been supposed to attenuate age-related brain deteriorations and may even improve cognitive functions in healthy older adults. Effects of exergaming, however, vary largely across studies. Moreover, the underlying neurophysiological mechanisms by which exergaming may affect cognitive and brain function are still poorly understood. Therefore, we systematically reviewed the effects of exergame interventions on cognitive outcomes and neurophysiological correlates in healthy older adults (>60 years). After screening 2709 studies (Cochrane Library, PsycINFO, Pubmed, Scopus), we found 15 eligible studies, four of which comprised neurophysiological measures. Most studies reported within group improvements in exergamers and favorable interaction effects compared to passive controls. Fewer studies found superior effects of exergaming over physically active control groups and, if so, solely for executive functions. Regarding individual cognitive domains, results showed no consistence. Positive effects on neurophysiological outcomes were present in all respective studies. In summary, exergaming seems to be equally or slightly more effective than other physical interventions on cognitive functions in healthy older adults. Tailored interventions using well-considered exergames and intervention designs, however, may result in more distinct effects on cognitive functions.
Collapse
Affiliation(s)
- Robert Stojan
- Department of Human Movement Science and Health, Chemnitz University of Technology, Thueringer Weg 11, DE-09126 Chemnitz, Germany.
| | - Claudia Voelcker-Rehage
- Department of Human Movement Science and Health, Chemnitz University of Technology, Thueringer Weg 11, DE-09126 Chemnitz, Germany.
| |
Collapse
|
23
|
Arazi H, Aliakbari H, Asadi A, Suzuki K. Acute Effects of Mental Activity on Response of Serum BDNF and IGF-1 Levels in Elite and Novice Chess Players. ACTA ACUST UNITED AC 2019; 55:medicina55050189. [PMID: 31121929 PMCID: PMC6572672 DOI: 10.3390/medicina55050189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 11/28/2022]
Abstract
Background and Objectives: Although the effects of physical exercise on brain functions are well studied, the influence of mental activity is unknown. The aim of this study was to assess the influence of a session of mental activity on brain neurobiological factors in chess players. Materials and Methods: Ten elite and novice chess players were recruited to participate in this study as volunteers. The subjects performed a session of standard chess matches as a mental activity. Before and after each chess match, blood samples were drawn to analyze changes in serum brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1). Results: After each chess match, both the elite and novice groups showed significant increases in serum BDNF and IGF-1 concentrations. The elite group also showed significantly greater changes in BDNF and IGF-1 levels (p ≤ 0.05) than the novice group. Conclusions: Our findings indicate that a session of standard chess matches as a mental activity is effective for elevating BDNF and IGF-1 levels, and that their elevation in elite players seems to be more pronounced than those in novice players.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 1438, Iran.
| | - Hanieh Aliakbari
- Bandar-e-Anzali Branch, Islamic Azad University, Bandar-e-Anzali 43111, Iran.
| | - Abbas Asadi
- Department of Physical Education and Sport Sciences, Payame Noor University, Tehran 19395-3697, Iran.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| |
Collapse
|
24
|
Zhao Y, Zhang A, Wang Y, Hu S, Zhang R, Qian S. Genome-wide identification of brain miRNAs in response to high-intensity intermittent swimming training in Rattus norvegicus by deep sequencing. BMC Mol Biol 2019; 20:3. [PMID: 30646850 PMCID: PMC6334412 DOI: 10.1186/s12867-019-0120-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/10/2019] [Indexed: 11/20/2022] Open
Abstract
Background Physical exercise can improve brain function by altering brain gene expression. The expression mechanisms underlying the brain’s response to exercise still remain unknown. miRNAs as vital regulators of gene expression may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain. Results We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swimming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identified 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identified as significantly differentially expressed in response to HIST, 16 were up-regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up-regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identified from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve. Many acknowledged exercise-responsive brain genes such as Bdnf, Igf-1, Vgf, Ngf c-Fos, and Ntf3 etc. could be targeted by exercise-responsive miRNAs. Moreover, qRT-PCR and SABC immunohistochemical analysis further confirm the reliability of the expression of miRNAs and their targets. Conclusions This study demonstrated that physical exercise could induce differential expression of rat brain miRNAs and 34 exercise-responsive miRNAs were identified in rat brain. Our results suggested that exercise-responsive miRNAs could play important roles in regulating gene expression of rat brain in response to exercise. Electronic supplementary material The online version of this article (10.1186/s12867-019-0120-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhong Zhao
- College of Agriculture, Ludong University, Yantai, China.
| | - Anmin Zhang
- College of Sports, Yantai University, Yantai, China. .,Institute of Health Sciences, Shanxi University of Finance & Economics, Taiyuan, China.
| | - Yanfang Wang
- College of Life Sciences, Ludong University, Yantai, China
| | - Shuping Hu
- Institute of Health Sciences, Shanxi University of Finance & Economics, Taiyuan, China
| | | | | |
Collapse
|
25
|
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast 2018; 4:17-52. [PMID: 30564545 PMCID: PMC6296262 DOI: 10.3233/bpl-180069] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 02/06/2023] Open
Abstract
Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.
Collapse
Affiliation(s)
- Laura M. Vecchio
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Ying Meng
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Kristiana Xhima
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Nir Lipsman
- Institute of Medical Sciences, University of Toronto, ON, Canada
- Physical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
| | - Clement Hamani
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
26
|
Mulvey KL, Taunton S, Pennell A, Brian A. Head, Toes, Knees, SKIP! Improving Preschool Children's Executive Function Through a Motor Competence Intervention. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY 2018; 40:233-239. [PMID: 30376755 DOI: 10.1123/jsep.2018-0007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Executive function skills play a critical role in school readiness for young children and can be improved through targeted intervention. However, children in preschool often experience deficits in multiple developmental domains. Thus, there is a need for integrated interventions that target multiple domains in concert. This study tested whether a proven gross motor skill intervention, Successful Kinesthetic Instruction for Preschoolers (SKIP), also improves preschoolers' executive function. Participants were randomly assigned to either intervention (n = 50) or control (n = 57) conditions. Prior to intervention, executive function and gross motor skills were tested. Intervention occurred for 6 weeks with 30-min sessions twice weekly (dose = 360 min). At posttest, participants in the SKIP condition showed significantly better gross motor and executive function skills than control participants. Results are the first to document the effectiveness of the SKIP intervention in also improving children's executive function.
Collapse
|
27
|
Beltran-Valls MR, Adelantado-Renau M, Moliner-Urdiales D. Association Between Objectively Measured Physical Activity and Plasma BDNF in Adolescents: DADOS Study. J Mol Neurosci 2018; 65:467-471. [DOI: 10.1007/s12031-018-1122-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/11/2018] [Indexed: 02/01/2023]
|
28
|
da Silveira FP, Basso C, Raupp W, Dalpiaz M, Bertoldi K, Siqueira IR, Lago PD, de Souza MP, Elsner VR. BDNF levels are increased in peripheral blood of middle-aged amateur runners with no changes on histone H4 acetylation levels. J Physiol Sci 2017; 67:681-687. [PMID: 27743179 PMCID: PMC10717784 DOI: 10.1007/s12576-016-0496-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Our aim was to compare the basal levels of plasma brain-derived neurotrophic factor (BDNF) and global histone H4 acetylation in peripheral blood mononuclear cells (PBMCs) of healthy amateur runners (EXE group) with sedentary individuals (SED group) as well as to investigate the acute effect of a running race on these markers in the EXE group. Five days before the race, all participants were submitted to a basal blood collection. On the race day, two blood samples were collected in the EXE group before the running started and immediately at the end. In the basal period, a significant increase of plasma BDNF levels in the EXE individuals when compared to the SED group (p = 0.036) was demonstrated, while no difference in global histone H4 acetylation levels was observed. These parameters were unaltered in the EXE group after the race. The increased levels of BDNF might be linked to healthy middle-aged runners' phenotype.
Collapse
Affiliation(s)
- Fernanda Peres da Silveira
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado, 80-Rio Branco, Porto Alegre, Rio Grande do Sul, CEP 90420-060, Brazil
| | - Carla Basso
- Programa de Pós Graduação Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Wagner Raupp
- Programa de Pós Graduação Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Morgana Dalpiaz
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado, 80-Rio Branco, Porto Alegre, Rio Grande do Sul, CEP 90420-060, Brazil
| | - Karine Bertoldi
- Programa de Pós Graduação Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ionara Rodrigues Siqueira
- Programa de Pós Graduação Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Dal Lago
- Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maristela Padilha de Souza
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado, 80-Rio Branco, Porto Alegre, Rio Grande do Sul, CEP 90420-060, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado, 80-Rio Branco, Porto Alegre, Rio Grande do Sul, CEP 90420-060, Brazil.
| |
Collapse
|
29
|
Dinoff A, Herrmann N, Swardfager W, Lanctôt KL. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 2017; 46:1635-1646. [PMID: 28493624 DOI: 10.1111/ejn.13603] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
It has been hypothesized that one mechanism through which physical activity provides benefits to cognition and mood is via increasing brain-derived neurotrophic factor (BDNF) concentrations. Some studies have reported immediate benefits to mood and various cognitive domains after a single session of exercise. This meta-analysis sought to determine the effect of a single exercise session on concentrations of BDNF in peripheral blood, in order to evaluate the potential role of BDNF in mediating the beneficial effects of exercise on brain health. MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after acute exercise interventions. Risk of bias within studies was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using a funnel plot and Egger's test. Potential sources of heterogeneity were explored in subgroup analyses. In 55 studies that met inclusion criteria, concentrations of peripheral blood BDNF were higher after exercise (SMD = 0.59, 95% CI: 0.46-0.72, P < 0.001). In meta-regression analysis, greater duration of exercise was associated with greater increases in BDNF. Subgroup analyses revealed an effect in males but not in females, and a greater BDNF increase in plasma than serum. Acute exercise increased BDNF concentrations in the peripheral blood of healthy adults. This effect was influenced by exercise duration and may be different across genders.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Walter Swardfager
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
30
|
Jeon YK, Ha CH. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ Health Prev Med 2017; 22:27. [PMID: 29165142 PMCID: PMC5664787 DOI: 10.1186/s12199-017-0643-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 11/13/2022] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) seems to serve as an important regulatory mechanism in the growth and development of neurons in many areas of the brain.Insulin-like growth factor 1 (IGF-1) is related to neurogenesis and regulation of the BDNF gene and is involved in the growth and differentiation of neurons.Cortisol is released in response to stimuli such as psychological oppression, anxiety, and fear. Stress also induces changes in BDNF. The purpose of this study was thus to examine the effects of varying intensities of aerobic exercise on resting serum BDNF, IGF-1 concentrations, cortisol, and memory of adolescents. Methods Forty male students with no history of physical illness from the middle school by participated in this study. Participants were randomly assigned to low, moderate, or high intensity treadmill exercise group, or a stretching (control) group. Exercise was performed 4 times per week for 12 weeks. Body composition, brain derived neurotrophic factor levels, insulin-like growth factor 1 levels, cortisol levels, and working memory were assessed. Results The high intensity exercise group showed a significant increase in brain derived neurotrophic factor at rest, concentration level of insulin-like growth factor 1, cortisol, and working memory. For resting brain derived neurotrophic factor, the high intensity exercise group showed a more significant increase compared to the low intensity aerobic and stretching groups. The change in the working memory significantly increased for the high intensity exercise group compared to the low intensity aerobic group, moderate intensity exercise group, and stretching group. Conclusions In adolescents, whose brains are still developing, aerobic exercise of moderate to high intensity levels seems to have a positive effect on levels of serum brain derived neurotrophic factor at rest and on cognitive functioning. Trial registration EHPM-D-16-00107R2. ICMJE. 12 July 2016.
Collapse
Affiliation(s)
- Yong Kyun Jeon
- Department of Physical Education, Dankook University, Yongin, Republic of Korea
| | - Chang Ho Ha
- Department Human Performance and Leisure Studies, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC, 27411, USA.
| |
Collapse
|
31
|
Borges ME, Ribeiro AM, Pauli JR, Arantes LM, Luciano E, de Moura LP, de Almeida Leme JAC, Medeiros A, Bertolini NO, Sibuya CY, Gomes RJ. Cerebellar Insulin/IGF-1 signaling in diabetic rats: Effects of exercise training. Neurosci Lett 2017; 639:157-161. [PMID: 28034783 DOI: 10.1016/j.neulet.2016.12.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
Abstract
The Diabetes Mellitus (DM) is a chronic disease associated with loss of brain regions such as the cerebellum, increasing the risk of developing neurodegenerative diseases such as Parkinson's disease (PD). In the brain of diabetic and PD organisms the insulin/IGF-1 signaling is altered. Exercise training is an effective intervention for the prevention of neurodegerative diseases since it release neurotrophic factors and regulating insulin/IGF-1 signaling in the brain. This study aimed to evaluate the proteins involved in the insulin/IGF-1 pathway in the cerebellum of diabetic rats subjected to exercise training protocol. Wistar rats were distributed in four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced by Alloxan (ALX) (32mg/kgb.w.). The training program consisted in swimming 5days/week, 1h/day, during 6 weeks, supporting an overload corresponding to 90% of the anaerobic threshold. At the end, cerebellum was extracted to determinate the protein expression of GSK-3β, IRβ and IGF-1R and the phosphorylation of β-amyloid, Tau, ERK1+ERK2 by Western Blot analysis. All dependent variables were analyzed by one-way analysis of variance with significance level of 5%. Diabetes causes hyperglycemia in both diabetic groups; however, in TD, there was a reduction in hyperglycemia compared to SD. Diabetes increased Tau and β-amyloid phosphorylation in both SD and TD groups. Furthermore, aerobic exercise increased ERK1+ERK2 expression in TC. The data showed that in cerebellum of diabetic rats induced by alloxan there are some proteins expression like Parkinson cerebellum increased, and the exercise training was not able to modulate the expression of these proteins.
Collapse
Affiliation(s)
- Mariana Eiras Borges
- Department of Biosciences, São Paulo Federal University (UNIFESP), Santos, São Paulo, Brazil
| | | | - José Rodrigo Pauli
- Sport Science Course, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil
| | - Luciana Mendonça Arantes
- Departament of Physical Education, University Center of Patos de Minas, Patos de Minas, Minas Gerais, Brazil, Brazil
| | - Eliete Luciano
- Department of Physical Education, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | | | | | - Alessandra Medeiros
- Department of Biosciences, São Paulo Federal University (UNIFESP), Santos, São Paulo, Brazil
| | | | - Clarice Yoshiko Sibuya
- Department of Physical Education, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Ricardo José Gomes
- Department of Biosciences, São Paulo Federal University (UNIFESP), Santos, São Paulo, Brazil.
| |
Collapse
|
32
|
Park SH, Song M. Effects of aerobic and anaerobic exercise on spatial learning ability in hypothyroid rats: a pilot study. J Phys Ther Sci 2016; 28:3489-3492. [PMID: 28174480 PMCID: PMC5276789 DOI: 10.1589/jpts.28.3489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This pilot study analyzed the degradation of spatial learning ability caused by hypothyroidism using aerobic and anaerobic exercise. [Subjects and Methods] The experiments were performed on 11, four-week-old male Sprague-Dawley rats. Hypothyroidism-induced rats receiving propylthiouracil (PTU) treatment were divided into aerobic exercise, anaerobic exercise, and control groups. Each group performed exercise and rest for four weeks. Changes in lethargy, memory deterioration, and thyroid function were measured in each group by blood analysis and open field and Morris water maze tests. [Results] After four weeks, blood analysis revealed that the thyroid hormone levels had returned to normal in the aerobic exercise, anaerobic exercise, and control groups, whereas the open field and Morris water maze tests showed that the aerobic and anaerobic exercise groups had faster recovery compared to that of the control group. In addition, comparison of aerobic and anaerobic groups showed that the anaerobic exercise group had faster recovery compared to that of the aerobic group. [Conclusion] The findings of this study suggest that exercise helped to improve lethargy and deteriorated spatial learning ability caused by hypothyroidism and to recover function in rats. Anaerobic exercise was more beneficial than aerobic exercise in alleviating symptoms.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan, Republic of Korea
| | - MinYoung Song
- Department of Physical Therapy, Dong-Eui Institute of Technology, Republic of Korea
| |
Collapse
|
33
|
Schmidt RH, Nickerson JM, Boatright JH. Exercise as Gene Therapy: BDNF and DNA Damage Repair. Asia Pac J Ophthalmol (Phila) 2016; 5:309-11. [PMID: 27488073 PMCID: PMC4975542 DOI: 10.1097/apo.0000000000000226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA damage is a common feature of neurodegenerative illnesses, and the ability to repair DNA strand breaks and lesions is crucial for neuronal survival, reported by Jeppesen et al (Prog Neurobiol. 2011;94:166-200) and Shiwaku et al (Curr Mol Med. 2015;15:119-128). Interventions aimed at repairing these lesions, therefore, could be useful for preventing or delaying the progression of disease. One potential strategy for promoting DNA damage repair (DDR) is exercise. Although the role of exercise in DDR is not understood, there is increasing evidence that simple physical activity may impact clinical outcomes for neurodegeneration. Here, we discuss what is currently known about the molecular mechanisms of brain-derived neurotrophic factor and how these mechanisms might influence the DDR process.
Collapse
Affiliation(s)
- Robin H. Schmidt
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - John M. Nickerson
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
34
|
Diamond A, Ling DS. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev Cogn Neurosci 2016; 18:34-48. [PMID: 26749076 PMCID: PMC5108631 DOI: 10.1016/j.dcn.2015.11.005] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/26/2015] [Accepted: 11/23/2015] [Indexed: 12/26/2022] Open
Abstract
The 'Executive Functions' (EFs) of inhibitory control, working memory, and cognitive flexibility enable us to think before we act, resist temptations or impulsive reactions, stay focused, reason, problem-solve, flexibly adjust to changed demands or priorities, and see things from new and different perspectives. These skills are critical for success in all life's aspects and are sometimes more predictive than even IQ or socioeconomic status. Understandably, there is great interest in improving EFs. It's now clear they can be improved at any age through training and practice, much as physical exercise hones physical fitness. However, despite claims to the contrary, wide transfer does not seem to occur and 'mindless' aerobic exercise does little to improve EFs. Important questions remain: How much can EFs be improved (are benefits only superficial) and how long can benefits be sustained? What are the best methods for improving EFs? What about an approach accounts for its success? Do the answers to these differ by individual characteristics such as age or gender? Since stress, sadness, loneliness, or poor health impair EFs, and the reverse enhances EFs, we predict that besides directly train EFs, the most successful approaches for improving EFs will also address emotional, social, and physical needs.
Collapse
Affiliation(s)
- Adele Diamond
- Program in Developmental Cognitive Neuroscience, Department of Psychiatry, UBC, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1.
| | - Daphne S Ling
- Program in Developmental Cognitive Neuroscience, Department of Psychiatry, UBC, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
| |
Collapse
|
35
|
Park K, Lee S, Hong Y, Park S, Choi J, Chang KT, Kim JH, Hong Y. Therapeutic physical exercise in neural injury: friend or foe? J Phys Ther Sci 2015; 27:3933-5. [PMID: 26834383 PMCID: PMC4713822 DOI: 10.1589/jpts.27.3933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/01/2015] [Indexed: 01/29/2023] Open
Abstract
[Purpose] The intensity of therapeutic physical exercise is complex and sometimes
controversial in patients with neural injuries. This review assessed whether therapeutic
physical exercise is beneficial according to the intensity of the physical exercise.
[Methods] The authors identified clinically or scientifically relevant articles from
PubMed that met the inclusion criteria. [Results] Exercise training can improve body
strength and lead to the physiological adaptation of skeletal muscles and the nervous
system after neural injuries. Furthermore, neurophysiological and neuropathological
studies show differences in the beneficial effects of forced therapeutic exercise in
patients with severe or mild neural injuries. Forced exercise alters the distribution of
muscle fiber types in patients with neural injuries. Based on several animal studies,
forced exercise may promote functional recovery following cerebral ischemia via signaling
molecules in ischemic brain regions. [Conclusions] This review describes several types of
therapeutic forced exercise and the controversy regarding the therapeutic effects in
experimental animals versus humans with neural injuries. This review also provides a
therapeutic strategy for physical therapists that grades the intensity of forced exercise
according to the level of neural injury.
Collapse
Affiliation(s)
- Kanghui Park
- Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Republic of Korea; Department of Physical Therapy, Dong-Ju College, Republic of Korea
| | - Seunghoon Lee
- Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Republic of Korea; Department of Physical Therapy, College of Biomedical Science and Engineering, Inje University, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Republic of Korea
| | - Yunkyung Hong
- Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Republic of Korea; Department of Physical Therapy, College of Biomedical Science and Engineering, Inje University, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Republic of Korea
| | - Sookyoung Park
- Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Republic of Korea; Department of Physical Therapy, College of Natural Sciences, Kyungnam University, Republic of Korea
| | - Jeonghyun Choi
- Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae, Republic of Korea, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
| | - Joo-Heon Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Yonggeun Hong
- Ubiquitous Healthcare and Anti-aging Research Center (u-HARC), Inje University, Republic of Korea; Department of Physical Therapy, College of Biomedical Science and Engineering, Inje University, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae, Republic of Korea, Republic of Korea
| |
Collapse
|
36
|
Alomari MA, Khabour OF, Maikano A, Alawneh K. Vascular function and brain-derived neurotrophic factor: The functional capacity factor. Vasc Med 2015; 20:518-26. [PMID: 26285588 DOI: 10.1177/1358863x15598390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive function. This study aims at establishing a plausible link between level of serum BDNF, functional capacity (FC), and vascular function in 181 young (age 25.5±9.1 years old), apparently healthy adults. Fasting blood samples were drawn from participants' antecubital veins into plain glass tubes while they were in a sitting position to evaluate serum BDNF using enzyme-linked immunosorbent assay (ELISA). Mercury-in-silastic strain-gauge plethysmography was used to determine arterial function indices, blood flow and vascular resistance at rest and following 5 minutes of arterial ischemia. The 6-minute walk distance (6MWD) test was used to determine FC, according to the American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories guidelines. It was conducted in an enclosed corridor on a flat surface with a circular track 33 meters long. The walking course was demarcated with bright colored cones. The 6MWD correlated with BDNF (r=0.3, p=0.000), as well as with forearm blood inflow (r=0.5, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed that BDNF and blood inflow were greater (p<0.05) while vascular resistance was less (p<0.05) in participants who achieved a longer 6MWD. Similarly, BDNF correlated with forearm blood inflow (r=0.4, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed improved vascular function (p<0.05) in the participants with greater BDNF. In conclusion, these findings might suggest that improved vascular function in individuals with greater FC is mediated, at least partially, by an enhanced serum BDNF level.
Collapse
Affiliation(s)
- Mahmoud A Alomari
- Division of Physical Therapy, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan Department of Biology, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Abubakar Maikano
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Khaldoon Alawneh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan Division of Rheumatology, Department of Medicine, King Abdulla Hospital, Irbid, Jordan
| |
Collapse
|