1
|
Presti N, Rideout TC, Temple JL, Bratta B, Hostler D. Recovery after Exercise-Induced Muscle Damage in Subjects Following a Vegetarian or Mixed Diet. Nutrients 2024; 16:2711. [PMID: 39203847 PMCID: PMC11356960 DOI: 10.3390/nu16162711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
It is unclear if following a vegetarian diet affects muscle recovery after exercise-induced muscle damage (EIMD). Sixteen vegetarians (VEG) and sixteen mixed dieters (MIX) performed a vertical jump, quadriceps femoris maximal isometric, and isokinetic concentric strength tests prior to and five days following the EIMD protocol. The quadriceps muscle was injured by performing eccentric contractions. Diet: MIX consumed more g/kg of animal protein (p < 0.001) and EAA (p < 0.05) except for isoleucine. VEG consumed more plant protein (p = 0.001). Isometric strength: MIX recovered post-day 2, VEG recovered post-day 4 (group (p = 0.07), time (p < 0.001)). Concentric contractions at 60 degrees per second: Both recovered post-day 1 (group (p = 0.27), time (p = 0.05)); 180 degrees per second: MIX recovered post-day 2, VEG recovered post-day 5 (group (p = 0.10), time (p < 0.001)); and 240 degrees per second: MIX recovered post-day 1, VEG did not recover by post-day 5 (group (p = 0.01), time (p < 0.001)). Vertical jump: Both recovered post-day 3 (group (p = 0.45), time (p < 0.001)). MIX recovered isometric strength 2 days faster, concentric strength was up to 5 days faster, and soreness was 1-4 days faster when compared to VEG. Both groups had similar recovery time for power.
Collapse
Affiliation(s)
- Nicole Presti
- Center for Research and Education in Special Environments, Exercise and Nutrition Department, University at Buffalo, Buffalo, NY 14214, USA;
| | - Todd C. Rideout
- Exercise and Nutrition Department, University at Buffalo, Buffalo, NY 14214, USA; (T.C.R.); (J.L.T.)
| | - Jennifer L. Temple
- Exercise and Nutrition Department, University at Buffalo, Buffalo, NY 14214, USA; (T.C.R.); (J.L.T.)
| | - Brian Bratta
- Athletics Department, University at Buffalo, Buffalo, NY 14214, USA;
| | - David Hostler
- Center for Research and Education in Special Environments, Exercise and Nutrition Department, University at Buffalo, Buffalo, NY 14214, USA;
| |
Collapse
|
2
|
Liao H, Zhu S, Li Y, Huang D. The Synergistic Effect of Compound Sugar with Different Glycemic Indices Combined with Creatine on Exercise-Related Fatigue in Mice. Foods 2024; 13:489. [PMID: 38338624 PMCID: PMC10855471 DOI: 10.3390/foods13030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, a compound sugar (CS) with different glycemic index sugars was formulated via hydrolysis characteristics and postprandial glycemic response, and the impact of CS and creatine emulsion on exercise-related fatigue in mice was investigated. Thirty-five C57BL/6 mice were randomly divided into five groups to supply different emulsions for 4 weeks: initial emulsion (Con), glucose emulsion (62 mg/10 g MW glucose; Glu), CS emulsion (62 mg/10 g MW compound sugar; CS), creatine emulsion (6 mg/10 g MW creatine; Cr), and CS and creatine emulsion (62 mg/10 g MW compound sugar, 6 mg/10 g MW creatine, CS-Cr). Then, the exhaustion time of weight-bearing swimming and forelimb grip strength were measured to evaluate the exercise capacity of mice, and some fatigue-related biochemical indexes of blood were determined. The results demonstrated that the ingestion of CS significantly reduced the peak of postprandial blood glucose levels and prolonged the energy supply of mice compared to ingesting an equal amount of glucose. Mouse exhaustion time was 1.22-fold longer in the CS group than in the glucose group. Additionally, the supplementation of CS increased the liver glycogen content and total antioxidant capacity of mice. Moreover, the combined supplementation of CS and creatine increased relative forelimb grip strength and decreased blood creatine kinase activity. The findings suggested that the intake of CS could enhance exercise capacity, and the combined supplementation of CS and creatine has a synergistic effect in improving performance.
Collapse
Affiliation(s)
- Hui Liao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
3
|
Mihajlovic M, Cabarkapa D, Cabarkapa DV, Philipp NM, Fry AC. Recovery Methods in Basketball: A Systematic Review. Sports (Basel) 2023; 11:230. [PMID: 37999447 PMCID: PMC10675622 DOI: 10.3390/sports11110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Although different strategies have been implemented to manage recovery-fatigue status in athletes, there is still a lack of consensus on which recovery protocols have the greatest impact and effectiveness when implemented with basketball players, including both physiological and psychological recovery methods. Thus, the purpose of this systematic review is to: (a) determine which recovery methods attain the greatest benefit in restoring the process of attenuating fatigue and (b) provide sports practitioners with guidelines on how some of the most effective recovery strategies can be used to optimize athletes' recovery and ultimately enhance their performance. Using the PRISMA guidelines, a total of 3931 research reports were obtained through four database searches (i.e., PubMed, Scopus, Cochrane, and Web of Science), from which only 25 met the inclusion and exclusion criteria. The recovery protocols analyzed in this systematic review were: sleep, nutrition, hydration, ergogenic aids, cold-water immersion, compression garments, massage, acupuncture, tapering, mindfulness, and red-light irradiation. The results revealed that all recovery strategies are capable of attenuating fatigue and enhancing recovery in basketball players to a certain degree. However, an individualized approach should be promoted, where a combination of proactive recovery modalities appears to result in the most rapid rates of recovery and athletes' ability to maintain high-level performance. Recovery should be programmed as an integral component of training regimens. Also, cooperation and communication between coaches, players, and the rest of the team staff members are essential in minimizing the risk of non-functional overreaching or injury and optimizing basketball players' on-court performance.
Collapse
Affiliation(s)
| | - Dimitrije Cabarkapa
- Jayhawk Athletic Performance Laboratory—Wu Tsai Human Performance Alliance, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
4
|
Lee MC, Hsu YJ, Yang LH, Huang CC, Ho CS. Ergogenic Effects of Green Tea Combined with Isolated Soy Protein on Increasing Muscle Mass and Exercise Performance in Resistance-Trained Mice. Nutrients 2021; 13:4547. [PMID: 34960099 PMCID: PMC8704395 DOI: 10.3390/nu13124547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
It is well known that supplementation with high protein after exercise can effectively promote muscle synthesis and repair, while green tea is rich in catechins that have antioxidant effects. We aimed to explore the effects of green tea combined with isolated soy protein on increase muscle mass in resistance-trained mice. A total of 32 male ICR mice (8-weeks old) were divided into four groups (n = 8/group), sedentary control group (SC), isolated soy protein with green tea group (ISPG), resistance training group (RT), isolated soy protein and green tea combine with resistance training group (ISPG + RT). All mice received control or ISPG by oral gavage for four consecutive weeks. Forelimb grip and exhaustive swimming time were used for exercise performance evaluation. In biochemical profile, we analyzed lactate, ammonia, blood urea nitrogen (BUN), and glucose and muscle damage index creatine kinase (CK) after exercise as biochemical parameters of exercise fatigue. The grip strength, muscular endurance, and exhaustive swimming time of the ISPG + RT group were significantly increased than other groups (p < 0.05), and also significantly decreased in serum lactate and ammonia levels (p < 0.05, respectively). The ISP + RT group was not only increased in quadriceps weight, (p < 0.05) but also decreased EFP (p < 0.05). We recommend using a 4-week supplementation with ISPG, combined with RT, to increase muscle mass, exercise performance, glycogen storage, and reduce fatigue biochemical parameters after exercise. The benefits of long-term supplementation or application to human supplementation can be further explored in the future.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.); (L.-H.Y.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.); (L.-H.Y.)
| | - Li-Hsuan Yang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.); (L.-H.Y.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.); (L.-H.Y.)
| | - Chun-Sheng Ho
- Division of Physical Medicine and Rehabilitation, Lo-Hsu Medical Foundation, Inc., Lotung Poh-Ai Hospital, Yilan 26546, Taiwan
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
5
|
Altundag Ö, Çelebi-Saltik B. From Embryo to Adult: One Carbon Metabolism in Stem Cells. Curr Stem Cell Res Ther 2021; 16:175-188. [PMID: 32652922 DOI: 10.2174/1574888x15666200712191308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are undifferentiated cells with self-renewal property and varying differentiation potential that allow the regeneration of tissue cells of an organism throughout adult life beginning from embryonic development. Through the asymmetric cell divisions, each stem cell replicates itself and produces an offspring identical with the mother cell, and a daughter cell that possesses the characteristics of a progenitor cell and commits to a specific lineage to differentiate into tissue cells to maintain homeostasis. To maintain a pool of stem cells to ensure tissue regeneration and homeostasis, it is important to regulate the metabolic functioning of stem cells, progenitor cells and adult tissue stem cells that will meet their internal and external needs. Upon fertilization, the zygote transforms metabolic reprogramming while implantation, embryonic development, organogenesis processes and after birth through adult life. Metabolism in stem cells is a concept that is relatively new to be enlightened. There are no adequate and comprehensive in vitro studies on the comparative analysis of the effects of one-carbon (1-C) metabolism on fetal and adult stem cells compared to embryonic and cancer stem cells' studies that have been reported recently. Since 1-C metabolism is linking parental environmental/ dietary factors and fetal development, investigating the epigenetic, genetic, metabolic and developmental effects on adult period is necessary. Several mutations and abnormalities in 1-C metabolism have been noted in disease changing from diabetes, cancer, pregnancy-related outcomes such as pre-eclampsia, spontaneous abortion, placental abruption, premature delivery, and cardiovascular diseases. In this review, the effects of 1-C metabolism, mainly the methionine and folate metabolism, in stem cells that exist in different developmental stages will be discussed.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| |
Collapse
|
6
|
Waskiw-Ford M, Hannaian S, Duncan J, Kato H, Abou Sawan S, Locke M, Kumbhare D, Moore D. Leucine-Enriched Essential Amino Acids Improve Recovery from Post-Exercise Muscle Damage Independent of Increases in Integrated Myofibrillar Protein Synthesis in Young Men. Nutrients 2020; 12:nu12041061. [PMID: 32290521 PMCID: PMC7231404 DOI: 10.3390/nu12041061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Leucine-enriched essential amino acids (LEAAs) acutely enhance post-exercise myofibrillar protein synthesis (MyoPS), which has been suggested to be important for muscle repair and recovery. However, the ability of LEAAs to concurrently enhance MyoPS and muscle damage recovery in free-living humans has not been studied. METHODS In a randomized, double-blind, placebo-controlled, parallel-group design, twenty recreationally active males consuming a controlled diet (1.2 g/kg/d of protein) were supplemented thrice daily with 4 g of LEAAs (containing 1.6 g leucine) or isocaloric placebo for four days following an acute bout of lower-body resistance exercise (RE). MyoPS at rest and integrated over 96 h of recovery was measured by D2O. Isometric and isokinetic torque, muscle soreness, Z-band streaming, muscle heat shock protein (HSP) 25 and 72, plasma creatine kinase (CK), and plasma interleukin-6 (IL-6) were measured over 96 h post-RE to assess various direct and indirect markers of muscle damage. RESULTS Integrated MyoPS increased ~72% over 96 h after RE (p < 0.05), with no differences between groups (p = 0.98). Isometric, isokinetic, and total peak torque decreased ~21% by 48 h after RE (p < 0.05), whereas total peak torque was ~10% greater overall during recovery in LEAAs compared to placebo (p < 0.05). There were moderate to large effects for peak torque in favour of LEAAs. Muscle soreness increased during recovery with no statistical differences between groups but small to moderate effects in favour of LEAAs that correlated with changes in peak torque. Plasma CK, plasma IL-6, and muscle HSP25 increased after RE (p < 0.05) but were not significantly different between groups (p ≥ 0.13). Consistent with a trend toward attenuated Z-band streaming in LEAAs (p = 0.07), muscle HSP72 expression was lower (p < 0.05) during recovery in LEAAs compared with placebo. There were no correlations between MyoPS and any measures of muscle damage (p ≥ 0.37). CONCLUSION Collectively, our data suggest that LEAAs moderately attenuated muscle damage without concomitant increases in integrated MyoPS in the days following an acute bout of resistance exercise in free-living recreationally active men.
Collapse
Affiliation(s)
- Marcus Waskiw-Ford
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Sarkis Hannaian
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Justin Duncan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Hiroyuki Kato
- Technology Development Center, Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan;
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, Toronto, ON M5G 2A2, Canada;
| | - Daniel Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
- Correspondence: ; Tel.: +1-416-946-4088
| |
Collapse
|