1
|
Toxic Potential of Cerrado Plants on Different Organisms. Int J Mol Sci 2022; 23:ijms23073413. [PMID: 35408775 PMCID: PMC8998518 DOI: 10.3390/ijms23073413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
Cerrado has many compounds that have been used as biopesticides, herbicides, medicines, and others due to their highly toxic potential. Thus, this review aims to present information about the toxicity of Cerrado plants. For this purpose, a review was performed using PubMed, Science Direct, and Web Of Science databases. After applying exclusion criteria, 187 articles published in the last 20 years were selected and analyzed. Detailed information about the extract preparation, part of the plant used, dose/concentration tested, model system, and employed assay was provided for different toxic activities described in the literature, namely cytotoxic, genotoxic, mutagenic, antibacterial, antifungal, antiviral, insecticidal, antiparasitic, and molluscicidal activities. In addition, the steps to execute research on plant toxicity and the more common methods employed were discussed. This review synthesized and organized the available research on the toxic effects of Cerrado plants, which could contribute to the future design of new environmentally safe products.
Collapse
|
2
|
Sudan CRC, Pereira LC, Silva AF, Moreira CPDS, de Oliveira DS, Faria G, Dos Santos JSC, Leclercq SY, Caldas S, Silva CG, Lopes JCD, de Almeida VL. Biological Activities of Extracts from Ageratum fastigiatum: Phytochemical Study and In Silico Target Fishing Approach. PLANTA MEDICA 2021; 87:1045-1060. [PMID: 34530481 DOI: 10.1055/a-1576-4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, the ethanolic extract from aerial parts of Ageratum fastigiatum was evaluated in vitro against epimastigote forms of Trypanosoma cruzi (Y strain), promastigote forms of Leishmania amazonensis (PH8 strain), and L. chagasi (BH400 strain). The extract was also evaluated against Staphylococcus aureus (ATCC 25 923), Escherichia coli (ATCC 11 775), Pseudomonas aeruginosa (ATCC 10 145), and Candida albicans (ATCC 36 802). The phytochemical screening was performed by thin-layer chromatography and high-performance liquid chromatography. The extract was fractionated using flash preparative chromatography. The ethanolic extract showed activity against T. cruzi, L. chagasi, and L. amazonensis and antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and C. albicans. The phytochemical screening revealed coumarins, terpenes/sterols, and flavonoids in the ethanolic extract. In addition, the coumarin identified as ayapin was isolated from this extract. We also performed in silico prediction of potential biological activities and targets for compounds previously found in A. fastigiatum. Several predictions were confirmed both retrospectively and prospectively by experimental results described here or elsewhere. Some activities described in the in silico target fishing approach were validated by the ethnopharmacological use and known biological properties. Some new activities and/or targets were predicted and could guide future studies. These results suggest that A. fastigiatum can be an interesting source of substances with antiparasitic and antimicrobial activities.
Collapse
Affiliation(s)
| | - Lucas Campos Pereira
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Andréia Fonseca Silva
- Empresa de Pesquisa Agropecuária de Minas, Gerais (EPAMIG), Belo Horizonte, MG, Brazil
| | | | | | - Gilson Faria
- Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Janete Soares Coelho Dos Santos
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sophie Yvette Leclercq
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sergio Caldas
- Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Cláudia Gontijo Silva
- Serviço de Fitoquímica e Prospecção Farmacêutica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Júlio César Dias Lopes
- Chemoinformatics Group (NEQUIM), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vera Lúcia de Almeida
- Serviço de Fitoquímica e Prospecção Farmacêutica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| |
Collapse
|