1
|
Hadavi E, de Vries RHW, Smink AM, de Haan B, Leijten J, Schwab LW, Karperien MHBJ, de Vos P, Dijkstra PJ, van Apeldoorn AA. In vitro degradation profiles and in vivo biomaterial-tissue interactions of microwell array delivery devices. J Biomed Mater Res B Appl Biomater 2020; 109:117-127. [PMID: 32672384 PMCID: PMC7754331 DOI: 10.1002/jbm.b.34686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
To effectively apply microwell array cell delivery devices their biodegradation rate must be tailored towards their intended use and implantation location. Two microwell array devices with distinct degradation profiles, either suitable for the fabrication of retrievable systems in the case of slow degradation, or cell delivery systems capable of extensive remodeling using a fast degrading polymer, were compared in this study. Thin films of a poly(ethylene glycol)‐poly(butylene terephthalate) (PEOT‐PBT) and a poly(ester urethane) were evaluated for their in vitro degradation profiles over 34 weeks incubation in PBS at different pH values. The PEOT‐PBT films showed minimal in vitro degradation over time, while the poly(ester urethane) films showed extensive degradation and fragmentation over time. Subsequently, microwell array cell delivery devices were fabricated from these polymers and intraperitoneally implanted in Albino Oxford rats to study their biocompatibility over a 12‐week period. The PEOT‐PBT implants shown to be capable to maintain the microwell structure over time. Implants provoked a foreign body response resulting in multilayer fibrosis that integrated into the surrounding tissue. The poly(ester urethane) implants showed a loss of the microwell structures over time, as well as a fibrotic response until the onset of fragmentation, at least 4 weeks post implantation. It was concluded that the PEOT‐PBT implants could be used as retrievable cell delivery devices while the poly(ester urethane) implants could be used for cell delivery devices that require remodeling within a 4–12 week period.
Collapse
Affiliation(s)
- Elahe Hadavi
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Rick H W de Vries
- Department of Cell Biology - Inspired Tissue Engineering (cBITE), MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart de Haan
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | | | - Marcel H B J Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter J Dijkstra
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Aart A van Apeldoorn
- Department of Cell Biology - Inspired Tissue Engineering (cBITE), MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|