1
|
Tanbouza N, Caron L, Biniaz M, Marcoux A, Ollevier T. Metal-Free Oxidation of Acceptor-Donor Acylhydrazones into Diazo Compounds Using Phenyl Iododiacetate. J Org Chem 2024; 89:16600-16612. [PMID: 39472445 DOI: 10.1021/acs.joc.4c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aryl-ester acylhydrazones readily react with phenyl iododiacetate (PIDA) in methanol to produce the corresponding α-diazoesters with good to excellent yields (30 examples). The conditions have also been proven to be efficient in the synthesis of triazolopyridines. The crude mixture containing the diazo compound and acetic acid was also irradiated with low-energy blue LED light for a subsequent one-pot insertion of the in situ-generated carbene with AcOH to afford the respective acetates in high yields.
Collapse
Affiliation(s)
- Nour Tanbouza
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Laurent Caron
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Mojtaba Biniaz
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Antony Marcoux
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| | - Thierry Ollevier
- Département de chimie, Université Laval, 1045 avenue de la Médecine, QC, Québec G1 V 0A6, Canada
| |
Collapse
|
2
|
Johnson SB, Valentino H, Sobrado P. Kinetic Characterization and Identification of Key Active Site Residues of the L-Aspartate N-Hydroxylase, CreE. Chembiochem 2024; 25:e202400350. [PMID: 38775737 DOI: 10.1002/cbic.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Indexed: 07/04/2024]
Abstract
CreE is a flavin-dependent monooxygenase (FMO) that catalyzes three sequential nitrogen oxidation reactions of L-aspartate to produce nitrosuccinate, contributing to the biosynthesis of the antimicrobial and antiproliferative nautral product, cremeomycin. This compound contains a highly reactive diazo functional group for which the reaction of CreE is essential to its formation. Nitro and diazo functional groups can serve as potent electrophiles, important in some challenging nucleophilic addition reactions. Formation of these reactive groups positions CreE as a promising candidate for biomedical and synthetic applications. Here, we present the catalytic mechanism of CreE and the identification of active site residues critical to binding L-aspartate, aiding in future enzyme engineering efforts. Steady-state analysis demonstrated that CreE is very specific for NADPH over NADH and performs a highly coupled reaction with L-aspartate. Analysis of the rapid-reaction kinetics showed that flavin reduction is very fast, along with the formation of the oxygenating species, the C4a-hydroperoxyflavin. The slowest step observed was the dehydration of the flavin. Structural analysis and site-directed mutagenesis implicated T65, R291, and R440 in the binding L-aspartate. The data presented describes the catalytic mechanism and the active site architecture of this unique FMO.
Collapse
Affiliation(s)
- Sydney B Johnson
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Hannah Valentino
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409
| |
Collapse
|
3
|
Kitamura M, Ohtsuka K, Eto T, Tsuzaki M, Wada M, Shimooka H, Okauchi T. Diazo-Transfer Reaction of Nonactivated Ketones with 2-Azido-1,3-bis(2,6-diisopropylphenyl)imidazolium Hexafluorophosphate (IPrAP). J Org Chem 2023; 88:15494-15500. [PMID: 37874046 DOI: 10.1021/acs.joc.3c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The diazo-transfer reaction of nonactivated ketone under mild reaction conditions was developed. Various nonactivated ketones such as aryl methyl ketones, sec-alkyl methyl ketones, and cyclic ketones were transformed into their corresponding α-diazoketones in one step by treating 2-azido-1,3-bis(2,6-diisopropylphenyl)imidazolium hexafluorophosphate (IPrAP) in the presence of iPr2NH in ethylene glycol. In the reaction of IPrAP with prim-alkyl methyl ketone and prim-alkyl aryl ketones, migratory amidation proceeded under the reaction conditions to afford the corresponding amides.
Collapse
Affiliation(s)
- Mitsuru Kitamura
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| | - Kazuki Ohtsuka
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| | - Takashi Eto
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| | - Masato Tsuzaki
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| | - Mayuko Wada
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| | - Hirokazu Shimooka
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
| |
Collapse
|
4
|
Simões MMQ, Cavaleiro JAS, Ferreira VF. Recent Synthetic Advances on the Use of Diazo Compounds Catalyzed by Metalloporphyrins. Molecules 2023; 28:6683. [PMID: 37764459 PMCID: PMC10537418 DOI: 10.3390/molecules28186683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Diazo compounds are organic substances that are often used as precursors in organic synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrangements, and carbene or metallocarbene insertions into C-H, N-H, O-H, S-H, and Si-H bonds. Typically, reactions from diazo compounds are catalyzed by transition metals with various ligands that modulate the capacity and selectivity of the catalyst. These ligands can modify and enhance chemoselectivity in the substrate, regioselectivity and enantioselectivity by reflecting these preferences in the products. Porphyrins have been used as catalysts in several important reactions for organic synthesis and also in several medicinal applications. In the chemistry of diazo compounds, porphyrins are very efficient as catalysts when complexed with low-cost metals (e.g., Fe and Co) and, therefore, in recent years, this has been the subject of significant research. This review will summarize the advances in the studies involving the field of diazo compounds catalyzed by metalloporphyrins (M-Porph, M = Fe, Ru, Os, Co, Rh, Ir) in the last five years to provide a clear overview and possible opportunities for future applications. Also, at the end of this review, the properties of artificial metalloenzymes and hemoproteins as biocatalysts for a broad range of applications, namely those concerning carbene-transfer reactions, will be considered.
Collapse
Affiliation(s)
- Mário M. Q. Simões
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - José A. S. Cavaleiro
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica Química, Universidade Federal Fluminense, Niterói 24241-002, RJ, Brazil
| |
Collapse
|
5
|
Zhao M, Guo Y, Wang Q, Liu L, Zhang S, Guo W, Wu LP, Qiu FG. Synthesis of 2-iminothiazolidin-4-ones via copper-catalyzed [2 + 1 + 2] tandem annulation. RSC Adv 2023; 13:2220-2224. [PMID: 36741140 PMCID: PMC9834997 DOI: 10.1039/d2ra07872d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
In this paper, an efficient synthesis of 2-iminothiazolidin-4-ones through a copper-catalyzed tandem annulation reaction of alkyl amines, isothiocyanates and diazo acetates is presented. Notable advantages of this [2 + 1 + 2] cyclization methodology include readily accessible starting materials, simple operation, mild reaction conditions, high yields, step-economy and diverse functional group tolerance. In addition, the reaction is applicable to the gram scale synthesis and the preparation of bioactive molecules.
Collapse
Affiliation(s)
- Mingming Zhao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qi Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lanqi Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shujie Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Lin-Ping Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fayang G Qiu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
6
|
Smallman HR, Brancaglion GA, Pastre JC, Browne DL. Continuous Flow Generation of Acylketene Intermediates via Nitrogen Extrusion. J Org Chem 2022; 87:12297-12305. [PMID: 36047721 PMCID: PMC9486939 DOI: 10.1021/acs.joc.2c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A flow chemistry
process for the generation and use of acylketene
precursors through extrusion of nitrogen gas is reported. Key to the
development of a suitable continuous protocol is the balance of reaction
concentration against pressure in the flow reactor. The resulting
process enables access to intercepted acylketene scaffolds using volatile
amine nucleophiles and has been demonstrated on the gram scale. Thermal
gravimetric analysis was used to guide the temperature set point of
the reactor coils for a variety of acyl ketene precursors. The simultaneous
generation and reaction of two reactive intermediates (both derived
from nitrogen extrusion) is demonstrated.
Collapse
Affiliation(s)
- Harry R Smallman
- School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, U.K
| | - Guilherme A Brancaglion
- Institute of Chemistry, University of Campinas-UNICAMP, Rua Monteiro Lobato 270, Campinas, São Paulo 13083-970, Brazil
| | - Julio C Pastre
- Institute of Chemistry, University of Campinas-UNICAMP, Rua Monteiro Lobato 270, Campinas, São Paulo 13083-970, Brazil
| | - Duncan L Browne
- School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, U.K
| |
Collapse
|
7
|
Tanbouza N, Caron L, Khoshoei A, Ollevier T. Catalytic Bismuth(V)-Mediated Oxidation of Hydrazones into Diazo Compounds. Org Lett 2022; 24:2675-2678. [PMID: 35349286 DOI: 10.1021/acs.orglett.2c00762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new bismuth(V) oxidative catalytic system has been developed and applied for the conversion of hydrazones into diazo compounds. With the use of low catalytic amounts of Ph3Bi and AcOH with NaBO3·H2O as a terminal oxidant, the in situ formation of Ph3Bi(OAc)2 is capable of oxidizing hydrazones in excellent yields. The reaction was applied for the synthesis of diazocarbonyls and 2,2,2-trifluoromethyl diazoalkanes in good to excellent yields.
Collapse
Affiliation(s)
- Nour Tanbouza
- Département de Chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Laurent Caron
- Département de Chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Azadeh Khoshoei
- Département de Chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Thierry Ollevier
- Département de Chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
8
|
Momo PB, Mizobuchi EF, Echemendía R, Baddeley I, Grayson MN, Burtoloso ACB. Organocatalytic Enantioselective Sulfa-Michael Additions to α,β-Unsaturated Diazoketones. J Org Chem 2022; 87:3482-3490. [PMID: 35179890 DOI: 10.1021/acs.joc.1c03045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enantioselective sulfa-Michael additions to α,β unsaturated diazocarbonyl compounds have been developed. Quinine-derived squaramide was found to be the best catalyst to promote C-S bond formation in a highly stereoselective fashion for alkyl and aryl thiols. The easy-to-follow protocol allowed the preparation of 22 examples in enantiomeric ratios up to 97:3 and reaction yields up to 94%. The mechanism and origins of enantioselectivity were determined through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Patricia B Momo
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Eduardo F Mizobuchi
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Radell Echemendía
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Isabel Baddeley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Matthew N Grayson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| |
Collapse
|
9
|
Singh GS. Synthesis and chemistry of diazo compounds under microwave irradiation: A review. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Girija S. Singh
- University of Botswana Faculty of Science Chemistry Notwane road 0022 Gaborone BOTSWANA
| |
Collapse
|
10
|
Crowley DC, Brouder TA, Kearney AM, Lynch D, Ford A, Collins SG, Maguire AR. Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations. J Org Chem 2021; 86:13955-13982. [PMID: 34379975 PMCID: PMC8524431 DOI: 10.1021/acs.joc.1c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Generation and use
of triflyl azide in flow enables efficient synthesis
of a range of α-diazocarbonyl compounds, including α-diazoketones,
α-diazoamides, and an α-diazosulfonyl ester, via both
Regitz-type diazo transfer and deacylative/debenzoylative diazo-transfer
processes with excellent yields and offers versatility in the solvent
employed, in addition to addressing the hazards associated with handling
of this highly reactive sulfonyl azide. Telescoping the generation
of triflyl azide and diazo-transfer process with highly enantioselective
copper-mediated intramolecular aromatic addition and C–H insertion
processes demonstrates that the reaction stream containing the α-diazocarbonyl
compound can be obtained in sufficient purity to pass directly over
the immobilized copper bis(oxazoline) catalyst without detrimentally
impacting the catalyst enantioselectivity.
Collapse
Affiliation(s)
- Daniel C Crowley
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Thomas A Brouder
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Aoife M Kearney
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Denis Lynch
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Alan Ford
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Stuart G Collins
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Anita R Maguire
- School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Russo TVC, Sá MM. One‐Pot Synthesis of α‐Diazo‐γ,δ‐unsaturated Esters as Versatile Building Blocks for Functionalized Dienes, Cyclopentenes, and 5,7‐Fused Bicycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Theo V. C. Russo
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis SC 88040-900 Brazil
| | - Marcus M. Sá
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis SC 88040-900 Brazil
| |
Collapse
|
12
|
Amino-modified Merrifield resins as recyclable catalysts for the safe and sustainable preparation of functionalized α-diazo carbonyl compounds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Day DP, Vargas JAM, Burtoloso ACB. Synthetic Routes Towards the Synthesis of Geminal α-Difunctionalized Ketones. CHEM REC 2021; 21:2837-2854. [PMID: 33533538 DOI: 10.1002/tcr.202000176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The importance of gem-difunctionalized ketones is represented by their broad applications across chemical boundaries over recent years. The interesting reactivities that this class of compounds possess have made them ideal building blocks to access high-value organic molecules. Furthermore, the gem-difunctionalized ketone moiety has featured in numerous bioactive molecules. For these reasons, a plethora of routes to access such significant molecules have been developed by research groups worldwide - this account looks at delineating the synthesis of gem-difunctionalized ketones from carbonyl substrates, diazo compounds, sulfur ylides and alkynyl reactants.
Collapse
Affiliation(s)
- David P Day
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| | - Jorge A M Vargas
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil.,Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 # 62-00 Campus Pampalinda, Santiago de Cali, Colombia
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| |
Collapse
|
14
|
Kotovshchikov YN, Latyshev GV, Kirillova EA, Moskalenko UD, Lukashev NV, Beletskaya IP. Assembly of Thiosubstituted Benzoxazoles via Copper-Catalyzed Coupling of Thiols with 5-Iodotriazoles Serving as Diazo Surrogates. J Org Chem 2020; 85:9015-9028. [PMID: 32508100 DOI: 10.1021/acs.joc.0c00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient cascade approach to thiosubstituted benzoxazoles has been developed. The transformation starts with in situ generation of a diazo compound via annulation-triggered electrocyclic opening of the 1,2,3-triazole ring. The subsequent Cu-catalyzed trapping of diazo intermediates by various thiols affords the desired heterocycles in generally good yields of up to 91%. The protocol features very good functional group tolerance and is applicable to substrates with different electronic properties.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Elena A Kirillova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Uliana D Moskalenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nikolay V Lukashev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
15
|
Caiuby CAD, de Jesus MP, Burtoloso ACB. α-Imino Iridium Carbenes from Imidoyl Sulfoxonium Ylides: Application in the One-Step Synthesis of Indoles. J Org Chem 2020; 85:7433-7445. [DOI: 10.1021/acs.joc.0c00833] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Clarice A. D. Caiuby
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, 13560-970 São Carlos, SP, Brazil
| | - Matheus P. de Jesus
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, 13560-970 São Carlos, SP, Brazil
| | - Antonio C. B. Burtoloso
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
16
|
Zhang J, Yang Q, Zhu Y, Wang J, Deng G. Synthesis and Rhodium(II)-Mediated Cascade Cyclopropanation/Rearrangement/Isomerization of Diazo 2,3,5-Trisubstituted Furans: The Construction of Penta-substituted Aromatic Compounds. J Org Chem 2020; 85:2395-2405. [PMID: 31916442 DOI: 10.1021/acs.joc.9b03093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ag(I)-catalyzed synthesis of diazo-trisubstituted furans starting from diazo-cumulated allenyl ketones has been investigated. The Rh2(OAc)4-catalyzed reaction of the diazo 2,3,5-trisubstituted furans provided penta-substituted aromatics via cascade intermolecular cyclopropanation/rearrangement/isomerization. The cyclopropanation on the furan ring/rearrangement of cyclopropane moiety has been reported. A reasonable mechanism is proposed.
Collapse
Affiliation(s)
- Jianfang Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Qin Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Yang Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Jianbo Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) , Peking University , Beijing 100871 , PR China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China.,Beijing National Laboratory for Molecular Sciences (BNLMS) , Peking University , Beijing 100871 , PR China
| |
Collapse
|
17
|
Gallo RDC, Campovilla Jr. OC, Ahmad A, Burtoloso ACB. Synthesis of Oxazinanones: Intramolecular Cyclization of Amino Acid-Derived Diazoketones via Silica-Supported HClO4 Catalysis. Front Chem 2019; 7:62. [PMID: 30800653 PMCID: PMC6376066 DOI: 10.3389/fchem.2019.00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 11/18/2022] Open
Abstract
A Brønsted acid catalyzed intramolecular cyclization of N-Cbz-protected diazoketones, derived from α-amino acids, is described. The reaction proceeds under metal-free conditions and is promoted by ecofriendly silica-supported HClO4 as the catalyst and methanol as the solvent. This transformation enables the short synthesis of various 1,3-oxazinane-2,5-diones under mild reaction conditions and in good yields (up to 90%). The set-up is very simple; by just mixing all reagents together with no work-up necessary before purification, this protocol takes a greener approach.
Collapse
|
18
|
Santiago J, Burtoloso ACB. Synthesis of Fused Bicyclic [1,2,3]-Triazoles from γ-Amino Diazoketones. ACS OMEGA 2019; 4:159-168. [PMID: 31459321 PMCID: PMC6648081 DOI: 10.1021/acsomega.8b02764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/18/2018] [Indexed: 06/10/2023]
Abstract
Triazoles are an important class of N-heterocycles that are well known for their broad biological activities. In this work, we would like to demonstrate a direct synthesis of the rare fused bicyclic [1,2,3]-triazoles, employing γ-N-protected amino diazoketones as useful synthetic platforms. The strategy was based on the deprotection of a trifluoroacetamide group for the intramolecular and in situ generation of an α-diazo imine intermediate, followed by a 5-endo-dig cyclization to construct the bicyclic unit. In this fashion, the synthesis of a series of fused bicyclic [1,2,3]-triazoles could be carried out in good to excellent yields (63-95%).
Collapse
|
19
|
Yokoi T, Tanimoto H, Ueda T, Morimoto T, Kakiuchi K. Site-Selective Conversion of Azido Groups at Carbonyl α-Positions to Diazo Groups in Diazido and Triazido Compounds. J Org Chem 2018; 83:12103-12121. [DOI: 10.1021/acs.joc.8b02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taiki Yokoi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tomomi Ueda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
20
|
de Mello AC, Momo PB, Burtoloso ACB, Amarante GW. Metal-Free Insertion Reactions of Diazo Carbonyls to Azlactones. J Org Chem 2018; 83:11399-11406. [PMID: 30134107 DOI: 10.1021/acs.joc.8b01683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insertion reactions of diazo carbonyls to azlactones in basic conditions have been performed. The developed method allows the preparation of a wide range of oxazole derivatives in yields ranging from 74 to 98%. Different substituents on both azlactone rings and diazo carbonyls do not compromise the methodology, even those containing stereogenic centers. Isotopic labeling experiments revealed the mechanism may proceed through a rare diazo carbonyl activation by an ammonium salt derivative.
Collapse
Affiliation(s)
- Amanda C de Mello
- Department of Chemistry , Federal University of Juiz de Fora , 36036-900 Juiz de Fora , MG , Brazil
| | - Patrícia B Momo
- Institute of Chemistry of São Carlos , University of São Paulo , 13560-970 São Carlos , SP , Brazil
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos , University of São Paulo , 13560-970 São Carlos , SP , Brazil
| | - Giovanni W Amarante
- Department of Chemistry , Federal University of Juiz de Fora , 36036-900 Juiz de Fora , MG , Brazil
| |
Collapse
|