1
|
Raza S, Poria R, Kala D, Sharma N, Sharma AK, Florien N, Tuli HS, Kaushal A, Gupta S. Innovations in dengue virus detection: An overview of conventional and electrochemical biosensor approaches. Biotechnol Appl Biochem 2024; 71:481-500. [PMID: 38225854 DOI: 10.1002/bab.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.
Collapse
Affiliation(s)
- Shadan Raza
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, Warsaw, Poland
| | - Nishant Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University of Punjab, Mohali, Punjab, India
| | - Nkurunziza Florien
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| |
Collapse
|
2
|
Frazer JL, Norton R. Dengue: A review of laboratory diagnostics in the vaccine age. J Med Microbiol 2024; 73. [PMID: 38722305 DOI: 10.1099/jmm.0.001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.
Collapse
Affiliation(s)
| | - Robert Norton
- Pathology Queensland, Townsville QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Bharucha T, Ayhan N, Pastorino B, Rattanavong S, Vongsouvath M, Mayxay M, Changthongthip A, Sengvilaipaseuth O, Phonemixay O, Pommier JD, Gorman C, Zitzmann N, Newton PN, de Lamballerie X, Dubot-Pérès A. Immunoglobulin M seroneutralization for improved confirmation of Japanese encephalitis virus infection in a flavivirus-endemic area. Trans R Soc Trop Med Hyg 2022; 116:1032-1042. [PMID: 35593182 PMCID: PMC9623734 DOI: 10.1093/trstmh/trac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The mainstay of diagnostic confirmation of acute Japanese encephalitis (JE) involves detection of anti-JE virus (JEV) immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA). Limitations in the specificity of this test are increasingly apparent with the introduction of JEV vaccinations and the endemicity of other cross-reactive flaviviruses. Virus neutralization testing (VNT) is considered the gold standard, but it is challenging to implement and interpret. We performed a pilot study to assess IgG depletion prior to VNT for detection of anti-JEV IgM neutralizing antibodies (IgM-VNT) as compared with standard VNT. METHODS We evaluated IgM-VNT in paired sera from anti-JEV IgM ELISA-positive patients (JE n=35) and negative controls of healthy flavivirus-naïve (n=10) as well as confirmed dengue (n=12) and Zika virus (n=4) patient sera. IgM-VNT was subsequently performed on single sera from additional JE patients (n=76). RESULTS Anti-JEV IgG was detectable in admission serum of 58% of JE patients. The positive, negative and overall percentage agreement of IgM-VNT as compared with standard VNT was 100%. A total of 12/14 (86%) patient samples were unclassified by VNT and, with sufficient sample available for IgG depletion and IgG ELISA confirming depletion, were classified by IgM-VNT. IgM-VNT enabled JE case classification in 72/76 (95%) patients for whom only a single sample was available. CONCLUSIONS The novel approach has been readily adapted for high-throughput testing of single patient samples and it holds promise for incorporation into algorithms for use in reference centres.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Nazli Ayhan
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Boris Pastorino
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anisone Changthongthip
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Onanong Sengvilaipaseuth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Ooyanong Phonemixay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Jean-David Pommier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Intensive Care Department, University Hospital of Guadeloupe, France
| | | | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Mao ZQ, Fukuta M, Balingit JC, Nguyen TTN, Nguyen CT, Inoue S, Nguyen TTT, Nguyen LKH, Minakawa N, Morita K, Le TQM, Hasebe F, Moi ML. Direct Viral RNA Detection of SARS-CoV-2 and DENV in Inactivated Samples by Real-Time RT-qPCR: Implications for Diagnosis in Resource Limited Settings with Flavivirus Co-Circulation. Pathogens 2021; 10:pathogens10121558. [PMID: 34959513 PMCID: PMC8705679 DOI: 10.3390/pathogens10121558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The RT-qPCR method remains the gold standard and first-line diagnostic method for the detection of SARS-CoV-2 and flaviviruses, especially in the early stage of viral infection. Rapid and accurate viral detection is a starting point in the containment of the COVID-19 pandemic and flavivirus outbreaks. However, the shortage of diagnostic reagents and supplies, especially in resource-limited countries that experience co-circulation of SARS-CoV-2 and flaviviruses, are limitations that may result in lesser availability of RT-qPCR-based diagnostic tests. In this study, the utility of RNA-free extraction methods was assessed for the direct detection of SARS-CoV-2 and DENV-2 in heat-inactivated or chemical-inactivated samples. The findings demonstrate that direct real-time RT-qPCR is a feasible option in comparison to conventional real-time RT-qPCR based on viral genome extraction-based methods. The utility of heat-inactivation and direct real-time RT-qPCR for SARS-CoV-2, DENV-2 viral RNA detection was demonstrated by using clinical samples of SARS-CoV-2 and DENV-2 and spiked cell culture samples of SARS-CoV-2 and DENV-2. This study provides a simple alternative workflow for flavivirus and SARS-CoV-2 detection that includes heat inactivation and viral RNA extraction-free protocols, with aims to reduce the risk of exposure during processing of SARS-CoV-2 biological specimens and to overcome the supply-chain bottleneck, particularly in resource limited settings with flavivirus co-circulation.
Collapse
Affiliation(s)
- Zhan Qiu Mao
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Z.Q.M.); (M.F.); (J.C.B.); (S.I.); (N.M.); (K.M.); (F.H.)
| | - Mizuki Fukuta
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Z.Q.M.); (M.F.); (J.C.B.); (S.I.); (N.M.); (K.M.); (F.H.)
| | - Jean Claude Balingit
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Z.Q.M.); (M.F.); (J.C.B.); (S.I.); (N.M.); (K.M.); (F.H.)
| | - Thi Thanh Ngan Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (T.T.N.N.); (C.T.N.); (T.T.T.N.); (L.K.H.N.); (T.Q.M.L.)
| | - Co Thach Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (T.T.N.N.); (C.T.N.); (T.T.T.N.); (L.K.H.N.); (T.Q.M.L.)
| | - Shingo Inoue
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Z.Q.M.); (M.F.); (J.C.B.); (S.I.); (N.M.); (K.M.); (F.H.)
| | - Thi Thu Thuy Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (T.T.N.N.); (C.T.N.); (T.T.T.N.); (L.K.H.N.); (T.Q.M.L.)
| | - Le Khanh Hang Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (T.T.N.N.); (C.T.N.); (T.T.T.N.); (L.K.H.N.); (T.Q.M.L.)
| | - Noboru Minakawa
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Z.Q.M.); (M.F.); (J.C.B.); (S.I.); (N.M.); (K.M.); (F.H.)
| | - Kouichi Morita
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Z.Q.M.); (M.F.); (J.C.B.); (S.I.); (N.M.); (K.M.); (F.H.)
| | - Thi Quynh Mai Le
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (T.T.N.N.); (C.T.N.); (T.T.T.N.); (L.K.H.N.); (T.Q.M.L.)
| | - Futoshi Hasebe
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Z.Q.M.); (M.F.); (J.C.B.); (S.I.); (N.M.); (K.M.); (F.H.)
| | - Meng Ling Moi
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (Z.Q.M.); (M.F.); (J.C.B.); (S.I.); (N.M.); (K.M.); (F.H.)
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: ; Tel.: +81-03-5841-3515
| |
Collapse
|
5
|
Dos Santos JDMB, Soares CP, Monteiro FR, Mello R, do Amaral JB, Aguiar AS, Soledade MP, Sucupira C, De Paulis M, Andrade JB, Almeida FJ, Sáfadi MAP, Mau LB, Brasil JM, Ramalho T, Loures FV, Vieira RP, Durigon EL, de Oliveira DBL, Bachi ALL. In Nasal Mucosal Secretions, Distinct IFN and IgA Responses Are Found in Severe and Mild SARS-CoV-2 Infection. Front Immunol 2021; 12:595343. [PMID: 33717074 PMCID: PMC7946815 DOI: 10.3389/fimmu.2021.595343] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Likely as in other viral respiratory diseases, SARS-CoV-2 elicit a local immune response, which includes production and releasing of both cytokines and secretory immunoglobulin (SIgA). Therefore, in this study, we investigated the levels of specific-SIgA for SARS-CoV-2 and cytokines in the airways mucosa 37 patients who were suspected of COVID-19. According to the RT-PCR results, the patients were separated into three groups: negative for COVID-19 and other viruses (NEGS, n = 5); negative for COVID-19 but positive for the presence of other viruses (OTHERS, n = 5); and the positive for COVID-19 (COVID-19, n = 27). Higher specific-SIgA for SARS-CoV-2, IFN-β, and IFN-γ were found in the COVID-19 group than in the other groups. Increased IL-12p70 levels were observed in OTHERS group as compared to COVID-19 group. When the COVID-19 group was sub stratified according to the illness severity, significant differences and correlations were found for the same parameters described above comparing severe COVID-19 to the mild COVID-19 group and other non-COVID-19 groups. For the first time, significant differences are shown in the airway's mucosa immune responses in different groups of patients with or without respiratory SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Camila Pereira Soares
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
| | - Fernanda Rodrigues Monteiro
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil.,Method Faculty of São Paulo, São Paulo, Brazil
| | - Ralyria Mello
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
| | - Jonatas Bussador do Amaral
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Andressa Simões Aguiar
- Infection Control Service, São Luiz Gonzaga Hospital of Santa Casa de Misericordia os São Paulo, São Paulo, Brazil.,Infection Control Service and Epidemiological Hospital Nucleo, Municipal Children's Hospital Candido Fontoura, São Paulo, Brazil
| | - Mariana Pereira Soledade
- Infection Control Service and Epidemiological Hospital Nucleo, Municipal Children's Hospital Candido Fontoura, São Paulo, Brazil
| | - Carolina Sucupira
- Infection Control Service and Epidemiological Hospital Nucleo, Municipal Children's Hospital Candido Fontoura, São Paulo, Brazil
| | - Milena De Paulis
- Department of Pediatrics, School of Medicine, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Juliana Bannwart Andrade
- Department of Pediatrics, School of Medicine, University Hospital, University of São Paulo, São Paulo, Brazil
| | | | | | - Luciana Becker Mau
- Infection Control Service and Epidemiological Hospital Nucleo, Menino Jesus Municipal Hospital, São Paulo, Brazil
| | - Jamile Menezes Brasil
- Infection Control Service and Epidemiological Hospital Nucleo, Menino Jesus Municipal Hospital, São Paulo, Brazil
| | - Theresa Ramalho
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio V Loures
- Institute of Science and Technology, Federal University of São Paulo, São Paulo, Brazil
| | - Rodolfo Paula Vieira
- Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, São Paulo, Brazil.,Post-graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, São Paulo, Brazil.,Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil.,Scientific Platform Pasteur University of São Paulo, São Paulo, Brazil
| | - Danielle Bruna Leal de Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil.,Scientific Platform Pasteur University of São Paulo, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil.,Post-graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| |
Collapse
|
6
|
Mata VE, Andrade CAFD, Passos SRL, Hökerberg YHM, Fukuoka LVB, Silva SAD. Rapid immunochromatographic tests for the diagnosis of dengue: a systematic review and meta-analysis. CAD SAUDE PUBLICA 2020; 36:e00225618. [PMID: 32520127 DOI: 10.1590/0102-311x00225618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/18/2020] [Indexed: 11/22/2022] Open
Abstract
Dengue is an important arthropod-borne viral disease in terms of morbidity, mortality, economic impact and challenges in vector control. Benchmarks are expensive, time consuming and require trained personnel. Preventing dengue complications with rapid diagnosis has been based on the testing of easy-to-perform optimized immunochromatographic methods (ICT). This is a systematic meta-analysis review of the diagnostic accuracy of IgA, NS1, IgM and/or IgG ICT studies in suspected cases of acute or convalescent dengue, using a combination of RT-PCR, ELISA NS1, IgM IgG or viral isolation as a reference standard. This protocol was registered in PROSPERO (CRD42014009885). Two pairs of reviewers searched the PubMed, BIREME, Science Direct, Scopus, Web of Science, Ovid MEDLINE JBrigs, SCIRUS and EMBASE databases, selected, extracted, and quality-assessed by QUADAS 2. Of 3,783 studies, we selected 57, of which 40 in meta-analyses according to the analyte tested, with high heterogeneity (I2 > 90%), as expected for diagnostic tests. We detected higher pooled sensitivity in acute phase IgA (92.8%) with excellent (90%) specificity. ICT meta-analysis with NS1/IgM/IgG showed 91% sensitivity and 96% specificity. Poorer screening performance was for IgM/IgG ICT (sensitivity = 56%). Thus, the studies with NS1/IgM/IgG ICT showed the best combined performance in the acute phase of the disease.
Collapse
|
7
|
A need to raise the bar - A systematic review of temporal trends in diagnostics for Japanese encephalitis virus infection, and perspectives for future research. Int J Infect Dis 2020; 95:444-456. [PMID: 32205287 PMCID: PMC7294235 DOI: 10.1016/j.ijid.2020.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
Japanese encephalitis virus (JEV) remains a leading cause of neurological infection in Asia. A systematic review identified 20,212 published human cases of laboratory-confirmed JEV infections from 205 studies. 15,167 (75%) of cases were confirmed with the lowest confidence diagnostic test, i.e., level 3 or 4, or level 4. Only 109 (53%) of the studies reported contemporaneous testing for dengue-specific antibodies. A fundamental pre-requisite for the control of JE is lacking — that of a simple and specific diagnostic procedure that can be adapted for point-of-care tests and readily used throughout JE endemic regions of the world.
Objective Japanese encephalitis virus infection (JE) remains a leading cause of neurological disease in Asia, mainly involving individuals living in remote areas with limited access to treatment centers and diagnostic facilities. Laboratory confirmation is fundamental for the justification and implementation of vaccination programs. We reviewed the literature on historical developments and current diagnostic capability worldwide, to identify knowledge gaps and instill urgency to address them. Methods Searches were performed in Web of Science and PubMed using the term 'Japanese encephalitis' up to 13th October 2019. Studies reporting laboratory-confirmed symptomatic JE cases in humans were included, and data on details of diagnostic tests were extracted. A JE case was classified according to confirmatory levels (Fischer et al., 2008; Campbell et al., 2011; Pearce et al., 2018; Heffelfinger et al., 2017), where level 1 represented the highest level of confidence. Findings 20,212 published JE cases were identified from 205 studies. 15,167 (75%) of these positive cases were confirmed with the lowest-confidence diagnostic tests (level 3 or 4, or level 4). Only 109 (53%) of the studies reported contemporaneous testing for dengue-specific antibodies. Conclusion A fundamental pre-requisite for the control of JEV is lacking — that of a simple and specific diagnostic procedure that can be adapted for point-of-care tests and readily used throughout JE-endemic regions of the world.
Collapse
|
8
|
KELLNER ALEXANDERW. Living in pandemic times. AN ACAD BRAS CIENC 2020; 92:e20200725. [DOI: 10.1590/0001-3765202020200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|