3
|
di Biase L, Di Santo A, Caminiti ML, Pecoraro PM, Carbone SP, Di Lazzaro V. Dystonia Diagnosis: Clinical Neurophysiology and Genetics. J Clin Med 2022; 11:jcm11144184. [PMID: 35887948 PMCID: PMC9320296 DOI: 10.3390/jcm11144184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022] Open
Abstract
Dystonia diagnosis is based on clinical examination performed by a neurologist with expertise in movement disorders. Clues that indicate the diagnosis of a movement disorder such as dystonia are dystonic movements, dystonic postures, and three additional physical signs (mirror dystonia, overflow dystonia, and geste antagonists/sensory tricks). Despite advances in research, there is no diagnostic test with a high level of accuracy for the dystonia diagnosis. Clinical neurophysiology and genetics might support the clinician in the diagnostic process. Neurophysiology played a role in untangling dystonia pathophysiology, demonstrating characteristic reduction in inhibition of central motor circuits and alterations in the somatosensory system. The neurophysiologic measure with the greatest evidence in identifying patients affected by dystonia is the somatosensory temporal discrimination threshold (STDT). Other parameters need further confirmations and more solid evidence to be considered as support for the dystonia diagnosis. Genetic testing should be guided by characteristics such as age at onset, body distribution, associated features, and coexistence of other movement disorders (parkinsonism, myoclonus, and other hyperkinesia). The aim of the present review is to summarize the state of the art regarding dystonia diagnosis focusing on the role of neurophysiology and genetic testing.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Brain Innovations Lab., Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: or ; Tel.: +39-062-2541-1220
| | - Alessandro Di Santo
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Maria Letizia Caminiti
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Simona Paola Carbone
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
4
|
Wu MC, Chang YY, Lan MY, Chen YF, Tai CH, Lin YF, Tsai SF, Chen PL, Lin CH. A Clinical and Integrated Genetic Study of Isolated and Combined Dystonia in Taiwan. J Mol Diagn 2022; 24:262-273. [PMID: 35041927 DOI: 10.1016/j.jmoldx.2021.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022] Open
Abstract
Dystonia is a clinically and genetically heterogeneous movement disorder. However, genetic causes of dystonia remain largely unknown in Asian subjects. To address this, we applied an integrated two-step approach that included gene dosage analysis and a next-generation sequencing panel containing 72 known genes causative for dystonia and related movement disorders to 318 Taiwanese patients with isolated or combined dystonia. Whole-genome sequencing was performed for one multiplex family with no known causative variant. The panel confirmed the genetic diagnosis in 40 probands (12.6%). A genetic diagnosis was more likely with juvenile onset compared with adult onset (24.2% vs 10.8%; P = 0.03) and those with combined features, especially with myoclonus, compared with isolated dystonia (35.3% vs 10.5%; P = 0.004). The most common causative genes were SGCE followed by GCH1, TH, CACNA1B, PRRT2, MR1, CIZ1, PLA2G6, and PRKN. Genetic causes were identified from single cases in TOR1A, TUBB4A, THAP1, ATP1A3, ANO3, GNAL, KMT2B, SLC6A3, ADCY5, CYP27A1, PANK2, C19orf12, and SPG11. The whole-genome sequencing analysis identified a novel intragenic deletion in OPHN1 in a multiplex family with X-linked dystonia and intellectual delay. Our findings delineate the genetic architecture and clinical spectrum of dystonia-causing pathogenic variants in an Asian population.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Feng Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Manzo N, Ginatempo F, Belvisi D, Defazio G, Conte A, Deriu F, Berardelli A. Pathophysiological mechanisms of oromandibular dystonia. Clin Neurophysiol 2021; 134:73-80. [PMID: 34979293 DOI: 10.1016/j.clinph.2021.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 11/03/2022]
Abstract
Oromandibular dystonia (OMD) is a rare form of focal idiopathic dystonia. OMD was clinically identified at the beginning of the 20th century, and the main clinical features have been progressively described over the years. However, OMD has several peculiarities that still remain unexplained, including the high rate of oral trauma, which is often related to the onset of motor symptoms. The purpose of this paper was to formulate a hypothesis regarding the pathophysiology of OMD, starting from the neuroanatomical basis of the masticatory and facial systems and highlighting the features that differentiate this condition from other forms of focal idiopathic dystonia. We provide a brief review of the clinical and etiological features of OMD as well as neurophysiological and neuroimaging findings obtained from studies in patients with OMD. We discuss possible pathophysiological mechanisms underlying OMD and suggest that abnormalities in sensory input processing may play a prominent role in OMD pathophysiology, possibly triggering a cascade of events that results in sensorimotor cortex network dysfunction. Finally, we identify open questions that future studies should address, including the effect of abnormal sensory input processing and oral trauma on the peculiar neurophysiological abnormalities observed in OMD.
Collapse
Affiliation(s)
| | | | - Daniele Belvisi
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy
| | - Giovanni Defazio
- Movement Disorders Center, Department of Neurology, University of Cagliari, SS 554 km 4.500, 09042 Cagliari, Italy
| | - Antonella Conte
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, 07100 Sassari, Italy
| | - Alfredo Berardelli
- IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy.
| |
Collapse
|
6
|
Steel D, Zech M, Zhao C, Barwick KES, Burke D, Demailly D, Kumar KR, Zorzi G, Nardocci N, Kaiyrzhanov R, Wagner M, Iuso A, Berutti R, Škorvánek M, Necpál J, Davis R, Wiethoff S, Mankad K, Sudhakar S, Ferrini A, Sharma S, Kamsteeg EJ, Tijssen MA, Verschuuren C, van Egmond ME, Flowers JM, McEntagart M, Tucci A, Coubes P, Bustos BI, Gonzalez-Latapi P, Tisch S, Darveniza P, Gorman KM, Peall KJ, Bötzel K, Koch JC, Kmieć T, Plecko B, Boesch S, Haslinger B, Jech R, Garavaglia B, Wood N, Houlden H, Gissen P, Lubbe SJ, Sue CM, Cif L, Mencacci NE, Anderson G, Kurian MA, Winkelmann J. Loss-of-Function Variants in HOPS Complex Genes VPS16 and VPS41 Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Ann Neurol 2020; 88:867-877. [PMID: 32808683 DOI: 10.1002/ana.25879] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.
Collapse
Affiliation(s)
- Dora Steel
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Katy E S Barwick
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Derek Burke
- Enzyme Laboratory, Great Ormond Street Hospital for Children, London, UK
| | - Diane Demailly
- Unités des Pathologies Cérébrales Résistantes, Département de Neurochirurgie, Centre Hospitalier Universitaire, Montpellier, France
| | - Kishore R Kumar
- Department of Neurogenetics, Kolling Institute of Medical Research, University of Sydney and Northern Sydney Local Health District, Sydney, New South Wales, Australia.,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales, Australia.,Translational Genomics, Kinghorn Centre for Clinical Genomics, Garvan Institute for Medical Research, Sydney, New South Wales, Australia.,Department of Neurogenetics, University of Sydney and Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Giovanna Zorzi
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nardo Nardocci
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, UK
| | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Arcangela Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Matej Škorvánek
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Ján Necpál
- Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
| | - Ryan Davis
- Department of Neurogenetics, Kolling Institute of Medical Research, University of Sydney and Northern Sydney Local Health District, Sydney, New South Wales, Australia.,Translational Genomics, Kinghorn Centre for Clinical Genomics, Garvan Institute for Medical Research, Sydney, New South Wales, Australia.,Department of Neurogenetics, University of Sydney and Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sarah Wiethoff
- UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Arianna Ferrini
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marina A Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Corien Verschuuren
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martje E van Egmond
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Philippe Coubes
- Unités des Pathologies Cérébrales Résistantes, Département de Neurochirurgie, Centre Hospitalier Universitaire, Montpellier, France
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephen Tisch
- Department of Neurology, St. Vincent's Hospital, Sydney, Australia
| | - Paul Darveniza
- Department of Neurology, St. Vincent's Hospital, Sydney, Australia
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Kai Bötzel
- Department of Neurology, Ludwig Maximilian University, Munich, Germany
| | - Jan C Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tomasz Kmieć
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Haslinger
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Barbara Garavaglia
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nick Wood
- UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, University of Sydney and Northern Sydney Local Health District, Sydney, New South Wales, Australia.,Translational Genomics, Kinghorn Centre for Clinical Genomics, Garvan Institute for Medical Research, Sydney, New South Wales, Australia.,Department of Neurogenetics, University of Sydney and Northern Sydney Local Health District, Sydney, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Laura Cif
- Unités des Pathologies Cérébrales Résistantes, Département de Neurochirurgie, Centre Hospitalier Universitaire, Montpellier, France
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Glenn Anderson
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Manju A Kurian
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | | |
Collapse
|