1
|
Malisky JS, Cavalcante-Leão BL, Severiano MI, dos Santos GJB, Teive HAG, José MR, de Araújo CM, Zeigelboim BS. Evaluation of Quality of Life After Use the Virtual Reality in Patients with Neurodegenerative Disease. Int Arch Otorhinolaryngol 2024; 28:e523-e529. [PMID: 38974627 PMCID: PMC11226250 DOI: 10.1055/s-0044-1785681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/28/2023] [Indexed: 07/09/2024] Open
Abstract
Introduction Spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases. Objective To evaluate the living standard of patients with SCA, by applying the Vestibular Disorders Activities of Daily Living Scale (VADL) and Activitiesspecific Balance Confidence Scale (ABC) questionnaires. Methods An uncontrolled clinical trial study was conducted with 28 patients who underwent anamnesis, ENT evaluation, and vestibular assessment and the application of questionnaires VADL and ABC before and after rehabilitation with virtual reality. Results The vestibular exam was altered in 64.3% of the cases. The result between the correlation of the VADL and ABC questionnaires showed significant results in all cases (p < 0.005). The correlation between the ages and disease length with the VADL and ABC questionnaires was significant in the T3 assessment (p = 0.015). The correlation between the disease length and the VADL questionnaire was significant in all cases (p < 0.005). The comparison of the vestibular rehabilitation result (T1 to T2) showed a significant difference for all the applied games, except for the ski slalom. The comparison of the vestibular rehabilitation result (T1 to T3) showed significant difference for all the applied games (p < 0.005) (1st assessment before the start of rehabilitation designated T1, after 10 rehabilitation sessions, considered T2 and, at the end of 20 rehabilitation sessions, called T3). Conclusion We can point out a direct improvement in the living standard, reflected by the reduction of falls, better balance, and march, contributing to a higher self-confidence in patients in daily activities.
Collapse
Affiliation(s)
- Jéssica Spricigo Malisky
- Department of Otoneurology, Postgraduate Program in Communication Disorders, Universidade Tuiuti do Paraná (UTP), Curitiba, PR, Brazil
| | - Bianca Lopes Cavalcante-Leão
- Department of Otoneurology, Postgraduate Program in Communication Disorders, Universidade Tuiuti do Paraná (UTP), Curitiba, PR, Brazil
| | | | | | - Hélio Augusto Guizoni Teive
- Department of Neurology, Movement Disorders Unit, Hospital das Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maria Renata José
- Department of Otoneurology, Postgraduate Program in Communication Disorders, Universidade Tuiuti do Paraná (UTP), Curitiba, PR, Brazil
| | - Cristiano Miranda de Araújo
- Department of Otoneurology, Postgraduate Program in Communication Disorders, Universidade Tuiuti do Paraná (UTP), Curitiba, PR, Brazil
| | - Bianca Simone Zeigelboim
- Department of Otoneurology, Postgraduate Program in Communication Disorders, Universidade Tuiuti do Paraná (UTP), Curitiba, PR, Brazil
| |
Collapse
|
2
|
Garces P, Antoniades CA, Sobanska A, Kovacs N, Ying SH, Gupta AS, Perlman S, Szmulewicz DJ, Pane C, Németh AH, Jardim LB, Coarelli G, Dankova M, Traschütz A, Tarnutzer AA. Quantitative Oculomotor Assessment in Hereditary Ataxia: Systematic Review and Consensus by the Ataxia Global Initiative Working Group on Digital-motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:896-911. [PMID: 37117990 PMCID: PMC11102387 DOI: 10.1007/s12311-023-01559-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Oculomotor deficits are common in hereditary ataxia, but disproportionally neglected in clinical ataxia scales and as outcome measures for interventional trials. Quantitative assessment of oculomotor function has become increasingly available and thus applicable in multicenter trials and offers the opportunity to capture severity and progression of oculomotor impairment in a sensitive and reliable manner. In this consensus paper of the Ataxia Global Initiative Working Group On Digital Oculomotor Biomarkers, based on a systematic literature review, we propose harmonized methodology and measurement parameters for the quantitative assessment of oculomotor function in natural-history studies and clinical trials in hereditary ataxia. MEDLINE was searched for articles reporting on oculomotor/vestibular properties in ataxia patients and a study-tailored quality-assessment was performed. One-hundred-and-seventeen articles reporting on subjects with genetically confirmed (n=1134) or suspected hereditary ataxia (n=198), and degenerative ataxias with sporadic presentation (n=480) were included and subject to data extraction. Based on robust discrimination from controls, correlation with disease-severity, sensitivity to change, and feasibility in international multicenter settings as prerequisite for clinical trials, we prioritize a core-set of five eye-movement types: (i) pursuit eye movements, (ii) saccadic eye movements, (iii) fixation, (iv) eccentric gaze holding, and (v) rotational vestibulo-ocular reflex. We provide detailed guidelines for their acquisition, and recommendations on the quantitative parameters to extract. Limitations include low study quality, heterogeneity in patient populations, and lack of longitudinal studies. Standardization of quantitative oculomotor assessments will facilitate their implementation, interpretation, and validation in clinical trials, and ultimately advance our understanding of the evolution of oculomotor network dysfunction in hereditary ataxias.
Collapse
Affiliation(s)
- Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, Clinical Neurology, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna Sobanska
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Norbert Kovacs
- Department of Neurology, University of Pécs, Medical School, Pécs, Hungary
| | - Sarah H Ying
- Department of Otology and Laryngology and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Perlman
- University of California Los Angeles, Los Angeles, California, USA
| | - David J Szmulewicz
- Balance Disorders and Ataxia Service, Royal Victoria Eye and Ear Hospital, East Melbourne, Melbourne, VIC, 3002, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Laura B Jardim
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica/Centro de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, France
- Department of Genetics, Neurogene National Reference Centre for Rare Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique, Hôpitaux de Paris, Paris, France
| | - Michaela Dankova
- Department of Neurology, Centre of Hereditary Ataxias, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases", Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Alexander A Tarnutzer
- Neurology, Cantonal Hospital of Baden, 5404, Baden, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Garces P, Antoniades CA, Sobanska A, Kovacs N, Ying SH, Gupta AS, Perlman S, Szmulewicz DJ, Pane C, Németh AH, Jardim LB, Coarelli G, Dankova M, Traschütz A, Tarnutzer AA. Quantitative Oculomotor Assessment in Hereditary Ataxia: Discriminatory Power, Correlation with Severity Measures, and Recommended Parameters for Specific Genotypes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:121-135. [PMID: 36640220 PMCID: PMC10864420 DOI: 10.1007/s12311-023-01514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Characterizing bedside oculomotor deficits is a critical factor in defining the clinical presentation of hereditary ataxias. Quantitative assessments are increasingly available and have significant advantages, including comparability over time, reduced examiner dependency, and sensitivity to subtle changes. To delineate the potential of quantitative oculomotor assessments as digital-motor outcome measures for clinical trials in ataxia, we searched MEDLINE for articles reporting on quantitative eye movement recordings in genetically confirmed or suspected hereditary ataxias, asking which paradigms are most promising for capturing disease progression and treatment response. Eighty-nine manuscripts identified reported on 1541 patients, including spinocerebellar ataxias (SCA2, n = 421), SCA3 (n = 268), SCA6 (n = 117), other SCAs (n = 97), Friedreich ataxia (FRDA, n = 178), Niemann-Pick disease type C (NPC, n = 57), and ataxia-telangiectasia (n = 85) as largest cohorts. Whereas most studies reported discriminatory power of oculomotor assessments in diagnostics, few explored their value for monitoring genotype-specific disease progression (n = 2; SCA2) or treatment response (n = 8; SCA2, FRDA, NPC, ataxia-telangiectasia, episodic-ataxia 4). Oculomotor parameters correlated with disease severity measures including clinical scores (n = 18 studies (SARA: n = 9)), chronological measures (e.g., age, disease duration, time-to-symptom onset; n = 17), genetic stratification (n = 9), and imaging measures of atrophy (n = 5). Recurrent correlations across many ataxias (SCA2/3/17, FRDA, NPC) suggest saccadic eye movements as potentially generic quantitative oculomotor outcome. Recommendation of other paradigms was limited by the scarcity of cross-validating correlations, except saccadic intrusions (FRDA), pursuit eye movements (SCA17), and quantitative head-impulse testing (SCA3/6). This work aids in understanding the current knowledge of quantitative oculomotor parameters in hereditary ataxias, and identifies gaps for validation as potential trial outcome measures in specific ataxia genotypes.
Collapse
Affiliation(s)
- Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Norbert Kovacs
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Sarah H Ying
- Department of Otology and Laryngology and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Perlman
- University of California Los Angeles, Los Angeles, CA, USA
| | - David J Szmulewicz
- Balance Disorders and Ataxia Service, Royal Victoria Eye and Ear Hospital, East Melbourne, Melbourne, VIC, 3002, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Laura B Jardim
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica/Centro de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giulia Coarelli
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Department of Genetics, Neurogene National Reference Centre for Rare Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique, Hôpitaux de Paris, Paris, France
| | - Michaela Dankova
- Department of Neurology, Centre of Hereditary Ataxias, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases," Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Alexander A Tarnutzer
- Cantonal Hospital of Baden, Baden, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Deafness and Vestibulopathy in Cerebellar Diseases: a Practical Approach. THE CEREBELLUM 2020; 18:1011-1016. [PMID: 31154624 DOI: 10.1007/s12311-019-01042-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebellar ataxias are a clinically heterogeneous group of neurological disorders. Besides the cerebellum, several forms of hereditary ataxias or non-genetic ataxias also affect other areas of the brain. Some forms of cerebellar ataxias may have cochlear and vestibular involvement and may present with deafness and symptoms or signs of vestibulopathy (dizziness, nystagmus and diplopia). Recognizing otoneurological symptoms in patients with cerebellar ataxias is mandatory, since these signs may guide a specific diagnosis, and clinicians may provide a suitable therapeutic approach. In this review, we describe and discuss the most common forms of cerebellar ataxias associated with deafness and vestibulopathy.
Collapse
|