1
|
Torrico MC, Ballart C, Fernández-Arévalo A, Solano M, Rojas E, Abras A, Gonzales F, Mamani Y, Arnau A, Lozano D, Gascón J, Picado A, Torrico F, Muñoz C, Gállego M. The need for culture in tegumentary leishmaniasis diagnosis in Bolivia: A comparative evaluation of four parasitological techniques using two sampling methods. Acta Trop 2024; 250:107092. [PMID: 38065375 DOI: 10.1016/j.actatropica.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Leishmaniases are zoonotic diseases caused by protozoa of the genus Leishmania. In Bolivia, leishmaniasis occurs mainly in the cutaneous form (CL) followed by the mucosal or mucocutaneous form (ML or MCL), grouped as tegumentary leishmaniosis (TL), while cases of visceral leishmaniasis (VL) are rare. The cases of TL are routinely diagnosed by parasitological methods: Direct Parasitological Exam (DPE) and axenic culture, the latter being performed only by specialized laboratories. The aim of the present study was to optimize the parasitological diagnosis of TL in Bolivia, using two sampling methods. Samples from 117 patients with suspected TL, obtained by aspiration (n = 121) and scraping (n = 121) of the edge of the lesion were tested by: direct parasitological exam, culture in TSTB medium, and miniculture and microculture in Schneider's medium. A positive laboratory result by any of the four techniques evaluated using either of the two sampling methods was considered the gold standard. Of the 117 suspected patients included, TL was confirmed in 96 (82 %), corresponding 79 of the confirmed cases (82.3 %) to CL and 16 (16.7 %) to ML. Parasitological techniques specificity was 100 % and their analytical sensitivity was greater with scraping samples in TSTB culture (98 %). Scraping samples in TSTB and miniculture correlated well with the reference (Cohen's kappa coefficient=0.88) and showed good reliability (Cronbach's alpha coefficient ≥0.91). Microculture provided positive results earlier than the other culture methods (mean day 4.5). By day 14, 98 % of positive cultures had been detected. Scraping sampling and miniculture were associated with higher culture contamination (6 % and 17 %, respectively). Bacterial contamination predominated, regardless of the sampling and culture method, while filamentous fungi and mixed contamination were more frequently observed in cultures from scraping samples. In conclusion: (i) scraping samples proved more suitable for the diagnosis of TL as they increased analytical sensitivity, are less traumatic for the patient and are safer for laboratory personnel than aspirates; (ii) culture, mainly in TSBT medium, should be used for the diagnosis of TL due to its high sensitivity (doubling the number of cases diagnosed by DPE) and its low cost compared to other culture media.
Collapse
Affiliation(s)
- Mary Cruz Torrico
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia; Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia.
| | - Cristina Ballart
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
| | - Anna Fernández-Arévalo
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Marco Solano
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Ernesto Rojas
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Alba Abras
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Fabiola Gonzales
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Yercin Mamani
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia; Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Albert Arnau
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Daniel Lozano
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia; Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia
| | - Joaquim Gascón
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain; CIBERINFEC, ISCIII- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain
| | - Albert Picado
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
| | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia; Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia
| | - Carmen Muñoz
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau Barcelona, Barcelona, Spain; Institut de Recerca Biomèdica Sant Pau, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Montserrat Gállego
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain; CIBERINFEC, ISCIII- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
2
|
Abstract
The leishmanin skin test (LST) has been used for decades to detect exposure and immunity to the parasite Leishmania, the causative agent of the neglected tropical disease leishmaniasis. In the LST, Leishmania antigen (leishmanin) is intradermally injected into the forearm. In an individual who has been previously infected, a delayed-type hypersensitivity (DTH) reaction results in a measurable induration at the site of the injection, indicating that previous exposure to Leishmania has resulted in the development of cell-mediated immunity. LST positivity is associated with long-lasting protective immunity against reinfection, most notably as reported for visceral leishmaniasis (VL). Despite efforts over the past few decades, leishmanin antigen is no longer produced under good manufacturing practice (GMP) conditions anywhere in the world. Consequently, the use of the LST in epidemiological studies has declined in favor of serological and molecular tests. In this review, we provide a historical overview of the LST and justification for the reintroduction of leishmanin. A GMP-grade leishmanin can be used to detect immunity in vivo by the LST and can be investigated for use in an interferon-γ release assay (IGRA), which may serve as an in vitro version of the LST. The LST will be a valuable tool for surveillance and epidemiological studies in support of the VL elimination programs and as a surrogate marker of immunity in vaccine clinical trials.
Collapse
|
3
|
Recent advances and new strategies in Leishmaniasis diagnosis. Appl Microbiol Biotechnol 2020; 104:8105-8116. [PMID: 32845368 DOI: 10.1007/s00253-020-10846-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is a set of complex and multifaceted syndromes, with different clinical manifestations, caused by different species of the genus Leishmania spp. that can be characterized by at least four syndromes: visceral leishmaniasis (VL, also known as kala-azar), post-kala-azar dermal leishmaniasis (PKDL), cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis (MCL). Among the most serious clinical forms, VL stands out, which causes the death of around 59,000 people annually. Fast and accurate diagnosis in VL is essential to reduce the disease's morbidity and mortality. There are a large number of diagnostic tests for leishmaniasis, however they do cross-react with other protozoa and their sensitivity changes according to the clinical form of the disease. Thus, it is essential and necessary to provide a diagnosis that is sufficiently sensitive to detect asymptomatic infected individuals and specific to discriminate individuals with other infectious and parasitic diseases, thus enabling more accurate diagnostic tools than those currently used. In this context, the aim of this review is to summarize the conventional diagnostic tools and point out the new advances and strategies on visceral and cutaneous leishmaniasis diagnosis.
Collapse
|
4
|
Sereno D, Akhoundi M, Sayehmri K, Mirzaei A, Holzmuller P, Lejon V, Waleckx E. Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:E1684. [PMID: 32121441 PMCID: PMC7084391 DOI: 10.3390/ijms21051684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they cause requires the sampling of body fluids (e.g., blood, lymph, peritoneal fluid, cerebrospinal fluid) or organ biopsies (e.g., bone marrow, spleen), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials. Paper selection was based on searches in PubMed, Web of Science, WorldWideScience, SciELO, Embase, and Google. The information of each selected article (n = 333) was classified into different sections and data were extracted from 77 papers. The presence of Trypanosomatidae parasites has been tracked in most of organs or proximal tissues that produce body secretions or appendages, in naturally or experimentally infected hosts. The meta-analysis highlights the paucity of studies on human African trypanosomiasis and an absence on animal trypanosomiasis. Among the collected data high heterogeneity in terms of the I2 statistic (100%) is recorded. A high positivity is recorded for antibody and genetic material detection in urine of patients and dogs suffering leishmaniasis, and of antigens for leishmaniasis and Chagas disease. Data on conjunctival swabs can be analyzed with molecular methods solely for dogs suffering canine visceral leishmaniasis. Saliva and hair/bristles showed a pretty good positivity that support their potential to be used for leishmaniasis diagnosis. In conclusion, our study pinpoints significant gaps that need to be filled in order to properly address the interest of body secretion and hair or bristles for the diagnosis of infections caused by Leishmania and by other Trypanosomatidae parasites.
Collapse
Affiliation(s)
- Denis Sereno
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR MIVEGEC IRD, CNRS, 34032 Montpellier, France
| | - Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, 93000 Bobigny, France;
| | - Kourosh Sayehmri
- Psychosocial Injuries Research Center, Department of Biostatistics, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
| | - Asad Mirzaei
- Parasitology Department, Paramedical School, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Philippe Holzmuller
- CIRAD, UMR ASTRE “Animal, Santé, Territoires, Risques et Ecosystèmes”, F-34398 Montpellier, France;
- ASTRE, CIRAD, INRAE, Université de Montpellier (I-MUSE), 34000 Montpellier, France
| | - Veerle Lejon
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
| | - Etienne Waleckx
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Centro de Investigaciones Regionales «Dr Hideyo Noguchi», Universidad autònoma de yucatán, Merida, Yucatán 97000, Mexico
| |
Collapse
|
6
|
Biological evaluation of mimetic peptides as active molecules for a new and simple skin test in an animal model. Parasitol Res 2018; 118:317-324. [PMID: 30397777 DOI: 10.1007/s00436-018-6128-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
A skin test is a widely used tool in diagnostic evaluations to investigate cutaneous leishmaniases (CL). The actual antigen (Montenegro skin test [MST] antigen) presents some difficulties that pertain to its manufacturing and validation. To contribute to overcoming this problem, we propose the application of new-generation molecules that are based on skin antigen tests. These antigens were obtained through biotechnology pathways by manufacturing synthetic mimetic peptides. Three peptides, which were selected by phage display, were tested as skin test antigens in an animal model (Cavia porcellus) that was immunized with Leishmania amazonensis or Leishmania braziliensis. The peptide antigens, individually (PA1, PA2, PA3) or in a mix (PAMix), promoted induration reactions at 48 and 72 h after the test was performed. The indurations varied from 0.5 to 0.7 cm. In the animals immunized with L. amazonensis, the PA3 antigen showed better results than the standard MST antigen. In animals immunized with L. braziliensis, two peptide antigens (PA2 and PAMix) promoted induration reactions for a longer period of time than the standard MST antigen. These results validate our hypothesis that peptides could be used as antigens in skin tests and may replace the current antigen for CL diagnosis.
Collapse
|