1
|
Reis RCFM, Dos Santos EG, Benedetti MD, Reis ACC, Brandão GC, Silva GND, Diniz LA, Ferreira RS, Caldas IS, Braga SFP, Souza TBD. Design and synthesis of new 1,2,3-triazoles derived from eugenol and analogues with in vitro and in vivo activity against Trypanosoma cruzi. Eur J Med Chem 2023; 258:115622. [PMID: 37441850 DOI: 10.1016/j.ejmech.2023.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Chagas disease (CD) is a neglected tropical disease endemic in 21 countries and affects about 8 million people around the world. The pharmacotherapy for this disease is limited to two drugs (Benznidazole and Nifurtimox) and both are associated with important limitations, as low cure rate in the chronic phase of the disease, high toxicity and increasing resistance by Trypanosoma cruzi. Recently, we reported a bioactive 1,2,3-triazole (compound 35) active in vitro (IC50 42.8 μM) and in vivo (100 mg/kg) against T. cruzi Y strains and preliminary in silico studies suggested the cysteine protease cruzain as a possible target. Considering these initial findings, we describe here the design and synthesis of new 1,2,3-triazoles derivatives of our hit compound (35). The triazoles were initially evaluated against healthy cells derived from neonatal rat cardiomyoblasts (H9c2 cells) to determine their cytotoxicity and against epimastigotes forms of T. cruzi Y strain. The most active triazoles were compounds 26 (IC50 19.7 μM) and 27 (IC50 7.3 μM), while benznidazole was active at 21.6 μM. Derivative 27 showed an interesting selectivity index considering healthy H9c2 cells (>77). Promising activities against trypomastigotes forms of the parasite were also observed for triazoles 26 (IC50 20.74 μM) and 27 (IC50 8.41 μM), mainly 27 which showed activity once again higher than that observed for benznidazole (IC50 12.72 μM). While docking results suggested cruzain as a potential target for these compounds, no significant enzyme inhibition was observed in vitro, indicating that their trypanocidal activity is related to another mode of action. Considering the promising in vitro results of triazoles 26 and 27, the in vivo toxicity was initially verified based on the evaluation of behavioral and physiological parameters, mortality, effect in body weight gain, and through the measurement of AST/ALT enzymes, which are markers of liver toxicity. All these evaluations pointed to a good tolerability of the animals, especially considering triazole 27. A reduction in parasitemia was observed among animals treated with triazole 27, but not among those treated with derivative 26. Regarding the dosage, derivative 27 (100 mg/kg) was the most active sample against T. cruzi infection, showing a 99.4% reduction in parasitemia peak. Triazole 27 at a dosage of 100 mg/kg influenced the humoral immune response and reduced myocarditis in the animals, bringing antibody levels closer to those observed among healthy mice. Altogether, our results indicate compound 27 as a new lead for the development of drug candidates to treat Chagas disease.
Collapse
Affiliation(s)
| | - Elda Gonçalves Dos Santos
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Monique Dias Benedetti
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | | | - Geraldo Célio Brandão
- School of Pharmacy - Federal University of Ouro Preto, 35400-000, Ouro Preto, MG, Brazil
| | | | - Lucas Abreu Diniz
- Biochemistry and Immunology Department - Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Rafaela Salgado Ferreira
- Biochemistry and Immunology Department - Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Ivo Santana Caldas
- Department of Pathology and Parasitology, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | | | | |
Collapse
|
2
|
Leão LPMO, de B Vieira N, Oliveira PPS, Chagas-Paula DA, Soares MG, Souza TB, Baldim JL, Costa-Silva TA, Tempone AG, Dias DF, Lago JHG. Structure-activity relationship study of antitrypanosomal analogues of gibbilimbol B using multivariate analysis and computation-aided drug design. Bioorg Med Chem Lett 2023; 83:129190. [PMID: 36805048 DOI: 10.1016/j.bmcl.2023.129190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Gibbilimbol B and analogues were isolated from the Brazilian plant Piper malacophyllum and displayed activity against trypomastigote forms of Trypanosoma cruzi as well as reduced toxicity against NCTC cells. These results stimulated the preparation of a series of 24 chemically related analogues to study the potential of these compounds against T. cruzi trypomastigotes and explore structure-activity relationships. Initially, 12 compounds were planned, maintaining the same extension of the linear side chain of gibbilimbol B and unsaturation on the C-4 position but changing the functional groups - ester and amide - and variating the substituent at the p-position in the aromatic ring. Other 12 compounds were prepared using a branched side chain containing an ethyl group at the C-2 position. Overall, these structurally-related analogues demonstrated promising activity against trypomastigote forms (EC50 < 20 μM) and no mammalian cytotoxicity to fibroblasts (CC50 > 200 μM). Using multivariate statistics and machine learning analysis, aspects associated with structure/activity were related to their three-dimensional structure and, mainly, to the substituents on the aromatic ring. Obtained results suggested that the presence of t-butyl or nitro groups at p-position with appropriate side chains causes an alteration in the electron topological state, Van der Waals volumes, surface areas, and polarizabilities of tested compounds which seem to be essential for biological activity against T. cruzi parasites.
Collapse
Affiliation(s)
- Luiz P M O Leão
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | - Nátalie de B Vieira
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | - Paula P S Oliveira
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | | | - Marisi G Soares
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | - Thiago B Souza
- Pharmacy School, Federal University of Ouro Preto, Minas Gerais 35400-000, Brazil
| | - João L Baldim
- Federal Institute of Education, Science and Technology of South of Minas Gerais, Minas Gerais 37890-000, Brazil
| | | | - Andre G Tempone
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-902, Brazil
| | - Danielle F Dias
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-001, Brazil.
| | - João Henrique G Lago
- Center of Natural and Human Sciences, Federal University of ABC, São Paulo 09210-580, Brazil.
| |
Collapse
|
3
|
The Brazilian compound library (BraCoLi) database: a repository of chemical and biological information for drug design. Mol Divers 2022; 26:3387-3397. [PMID: 35089481 DOI: 10.1007/s11030-022-10386-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The Brazilian Compound Library (BraCoLi) is a novel open access and manually curated electronic library of compounds developed by Brazilian research groups to support further computer-aided drug design works, available on https://www.farmacia.ufmg.br/qf/downloads/ . Herein, the first version of the database is described comprising 1176 compounds. Also, the chemical diversity and drug-like profiles of BraCoLi were defined to analyze its chemical space. A significant amount of the compounds fitted Lipinski and Veber's rules, alongside other drug-likeness properties. A comparison using principal component analysis showed that BraCoLi is similar to other databases (FDA-approved drugs and NuBBEDB) regarding structural and physicochemical patterns. Furthermore, a scaffold analysis showed that BraCoLi presents several privileged chemical skeletons with great diversity. Despite the similar distribution in the structural and physicochemical spaces, Tanimoto coefficient values indicated that compounds present in the BraCoLi are generally different from the two other databases, where they showed different kernel distributions and low similarity. These facts show an interesting innovative aspect, which is a desirable feature for novel drug design purposes.
Collapse
|
4
|
Fernandes CC, Rezende JL, Silva EAJ, Silva FG, Stenico L, Crotti AEM, Esperandim VR, Santiago MB, Martins CHG, Miranda MLD. Chemical composition and biological activities of essential oil from flowers of Psidium guajava (Myrtaceae). BRAZ J BIOL 2021; 81:728-736. [DOI: 10.1590/1519-6984.230533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 11/22/2022] Open
Abstract
Abstract Xylella fastidiosa is a plant-pathogenic bacterium that lives inside host xylem vessels, where it forms biofilm which is believed to be responsible for disrupting the passage of water and nutrients. Pectobacterium carotovorum is a Gram-negative plant-specific bacterium that causes not only soft rot in various plant hosts, but also blackleg in potato by plant cell wall degradation. Chagas disease, which is caused by Trypanosoma cruzi, has been commonly treated with nifurtimox and benzonidazole, two drugs that cause several side effects. As a result, the use of natural products for treating bacterial and neglected diseases has increased in recent years and plants have become a promising alternative to developing new medicines. Therefore, this study aimed to determine, for the first time, the chemical composition of essential oil from Psidium guajava flowers (PG-EO) and to evaluate its in vitro anti-Xylella fastidiosa, anti-Pectobacterium carotovorum, anti-Trypanosoma cruzi and cytotoxic activities. PG-EO was obtained by hydrodistillation in a Clevenger apparatus while its chemical composition was determined by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Major compounds identified in PG-EO were α-cadinol (37.8%), β-caryophyllene (12.2%), nerolidol (9.1%), α-selinene (8.8%), β-selinene (7.4%) and caryophyllene oxide (7.2%). Results showed that the PG-EO had strong trypanocidal activity against the trypomastigote forms of Trypanosoma cruzi (IC50 = 14.6 μg/mL), promising antibacterial activity against X. fastidiosa (MIC = 12.5 μg/mL) and P. carotovorum (MIC = 62.5 μg/mL), and moderate cytotoxicity against LLCMK2 adherent epithelial cells in the concentration range (CC50 = 250.5 μg/mL). In short, the PG-EO can be considered a new source of bioactive compounds for the development of pesticides and trypanocide drugs.
Collapse
|
5
|
Serafim MSM, Lavorato SN, Kronenberger T, Sousa YV, Oliveira GP, Dos Santos SG, Kroon EG, Maltarollo VG, Alves RJ, Mota BEF. Antibacterial activity of synthetic 1,3-bis(aryloxy)propan-2-amines against Gram-positive bacteria. Microbiologyopen 2019; 8:e814. [PMID: 30773849 PMCID: PMC6855212 DOI: 10.1002/mbo3.814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Synthetic 1,3‐bis(aryloxy)propan‐2‐amines have been shown in previous studies to possess several biological activities, such as antifungal and antiprotozoal. In the present study, we describe the antibacterial activity of new synthetic 1,3‐bis(aryloxy)propan‐2‐amines against Gram‐positive pathogens (Streptococcus pyogenes, Enterococcus faecalis and Staphylococcus aureus) including Methicillin–resistant S. aureus strains. Our compounds showed minimal inhibitory concentrations (MIC) in the range of 2.5–10 μg/ml (5.99–28.58 μM), against different bacterial strains. The minimal bactericidal concentrations found were similar to MIC, suggesting a bactericidal mechanism of action of these compounds. Furthermore, possible molecular targets were suggested by chemical similarity search followed by docking approaches. Our compounds are similar to known ligands targeting the cell division protein FtsZ, Quinolone resistance protein norA and the Enoyl‐[acyl‐carrier‐protein] reductase FabI. Taken together, our data show that synthetic 1,3‐bis(aryloxy)propan‐2‐amines are active against Gram‐positive bacteria, including multidrug–resistant strains and can be a promising lead in the development of new antibacterial compounds for the treatment of these infections.
Collapse
Affiliation(s)
- Mateus S M Serafim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stefânia N Lavorato
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Yamara V Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Graziele P Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Simone G Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erna G Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo J Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruno E F Mota
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
6
|
Fonseca-Berzal C, Arán VJ, Escario JA, Gómez-Barrio A. Experimental models in Chagas disease: a review of the methodologies applied for screening compounds against Trypanosoma cruzi. Parasitol Res 2018; 117:3367-3380. [PMID: 30232605 DOI: 10.1007/s00436-018-6084-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 01/29/2023]
Abstract
One of the main problems of Chagas disease (CD), the parasitic infection caused by Trypanosoma cruzi, is the lack of a completely satisfactory treatment, which is currently based on two old nitroheterocyclic drugs (i.e., nifurtimox and benznidazole) that show important limitations for treating patients. In this context, many laboratories look for alternative therapies potentially applicable to the treatment, and therefore, research in CD chemotherapy works in the design of experimental protocols for detecting molecules with activity against T. cruzi. Phenotypic assays are considered the most valuable strategy for screening these antiparasitic compounds. Among them, in vitro experiments are the first step to test potential anti-T. cruzi drugs directly on the different parasite forms (i.e., epimastigotes, trypomastigotes, and amastigotes) and to detect cytotoxicity. Once the putative trypanocidal drug has been identified in vitro, it must be moved to in vivo models of T. cruzi infection, to explore (i) acute toxicity, (ii) efficacy during the acute infection, and (iii) efficacy in the chronic disease. Moreover, in silico approaches for predicting activity have emerged as a supporting tool for drug screening procedures. Accordingly, this work reviews those in vitro, in vivo, and in silico methods that have been routinely applied during the last decades, aiming to discover trypanocidal compounds that contribute to developing more effective CD treatments.
Collapse
Affiliation(s)
- Cristina Fonseca-Berzal
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Vicente J Arán
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - José A Escario
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Alicia Gómez-Barrio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
7
|
Lavorato SN, Duarte MC, Lage DP, Tavares CAP, Coelho EAF, Alves RJ. Synthesis and antileishmanial activity of 1,3-bis(aryloxy)propan-2-amines. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1805-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
In silico structural characterization of protein targets for drug development against Trypanosoma cruzi. J Mol Model 2016; 22:244. [DOI: 10.1007/s00894-016-3115-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
|