1
|
Rojas A, Shen J, Cardozo F, Bernal C, Caballero O, Ping S, Key A, Haider A, de Guillén Y, Langjahr P, Acosta ME, Aria L, Mendoza L, Páez M, Von-Horoch M, Luraschi P, Cabral S, Sánchez MC, Torres A, Pinsky BA, Piantadosi A, Waggoner JJ. Characterization of Dengue Virus 4 Cases in Paraguay, 2019-2020. Viruses 2024; 16:181. [PMID: 38399957 PMCID: PMC10892180 DOI: 10.3390/v16020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
In 2019-2020, dengue virus (DENV) type 4 emerged to cause the largest DENV outbreak in Paraguay's history. This study sought to characterize dengue relative to other acute illness cases and use phylogenetic analysis to understand the outbreak's origin. Individuals with an acute illness (≤7 days) were enrolled and tested for DENV nonstructural protein 1 (NS1) and viral RNA by real-time RT-PCR. Near-complete genome sequences were obtained from 62 DENV-4 positive samples. From January 2019 to March 2020, 799 participants were enrolled: 253 dengue (14 severe dengue, 5.5%) and 546 other acute illness cases. DENV-4 was detected in 238 dengue cases (94.1%). NS1 detection by rapid test was 52.5% sensitive (53/101) and 96.5% specific (387/401) for dengue compared to rRT-PCR. DENV-4 sequences were grouped into two clades within genotype II. No clustering was observed based on dengue severity, location, or date. Sequences obtained here were most closely related to 2018 DENV-4 sequences from Paraguay, followed by a 2013 sequence from southern Brazil. DENV-4 can result in large outbreaks, including severe cases, and is poorly detected with available rapid diagnostics. Outbreak strains seem to have been circulating in Paraguay and Brazil prior to 2018, highlighting the importance of sustained DENV genomic surveillance.
Collapse
Affiliation(s)
- Alejandra Rojas
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
| | - John Shen
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Fátima Cardozo
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
- Departamento de Laboratorio de Análisis Clínicos, Hospital Central—Instituto de Previsión Social, Asunción 001531, Paraguay; (M.C.S.); (A.T.)
| | - Cynthia Bernal
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
| | - Oliver Caballero
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
| | - Sara Ping
- Department of Medicine, Division of Infectious Diseases, Emory University, 1760 Haygood Drive NE, Room E-169, Bay E-1, Atlanta, GA 30322, USA; (S.P.); (A.H.); (A.P.)
| | - Autum Key
- Department of Pathology, Emory University, Atlanta, GA 30322, USA;
| | - Ali Haider
- Department of Medicine, Division of Infectious Diseases, Emory University, 1760 Haygood Drive NE, Room E-169, Bay E-1, Atlanta, GA 30322, USA; (S.P.); (A.H.); (A.P.)
| | - Yvalena de Guillén
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
| | - Patricia Langjahr
- Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo 111421, Paraguay;
| | - Maria Eugenia Acosta
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
| | - Laura Aria
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
| | - Laura Mendoza
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
| | - Malvina Páez
- Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 111241, Paraguay; (F.C.); (C.B.); (O.C.); (Y.d.G.); (M.E.A.); (L.A.); (L.M.); (M.P.)
| | - Marta Von-Horoch
- Departamento de Epidemiología, Hospital Central—Instituto de Previsión Social, Asunción 001531, Paraguay; (M.V.-H.); (P.L.); (S.C.)
| | - Patricia Luraschi
- Departamento de Epidemiología, Hospital Central—Instituto de Previsión Social, Asunción 001531, Paraguay; (M.V.-H.); (P.L.); (S.C.)
| | - Sandra Cabral
- Departamento de Epidemiología, Hospital Central—Instituto de Previsión Social, Asunción 001531, Paraguay; (M.V.-H.); (P.L.); (S.C.)
| | - María Cecilia Sánchez
- Departamento de Laboratorio de Análisis Clínicos, Hospital Central—Instituto de Previsión Social, Asunción 001531, Paraguay; (M.C.S.); (A.T.)
| | - Aurelia Torres
- Departamento de Laboratorio de Análisis Clínicos, Hospital Central—Instituto de Previsión Social, Asunción 001531, Paraguay; (M.C.S.); (A.T.)
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anne Piantadosi
- Department of Medicine, Division of Infectious Diseases, Emory University, 1760 Haygood Drive NE, Room E-169, Bay E-1, Atlanta, GA 30322, USA; (S.P.); (A.H.); (A.P.)
- Department of Pathology, Emory University, Atlanta, GA 30322, USA;
| | - Jesse J. Waggoner
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
- Department of Medicine, Division of Infectious Diseases, Emory University, 1760 Haygood Drive NE, Room E-169, Bay E-1, Atlanta, GA 30322, USA; (S.P.); (A.H.); (A.P.)
| |
Collapse
|
2
|
Suppiah J, Ali EZ, Mohd Khalid MKN, Mohd Ghazali S, Tee KK, Zulkifli MMS, Ramli N, Adiee AH, Ramly MN, Robert F, Lakha Singh SS, Mohd Zain R, Thayan R. Resurgence of Dengue Virus Serotype 4 in Malaysia: A Comprehensive Clinicodemographic and Genomic Analysis. Trop Med Infect Dis 2023; 8:409. [PMID: 37624348 PMCID: PMC10458033 DOI: 10.3390/tropicalmed8080409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Dengue virus serotype 4 (DENV-4) has been the rarest circulating serotype in Malaysia, resulting in it being an understudied area. A recent observation from institutional surveillance data indicated a rapid increase in DENV-4-infected cases. The present study aimed to investigate the resurgence of DENV-4 in relation to the demographic, clinical and genomic profiles of 75 retrospective dengue samples. First, the demographic and clinical profiles obtained between 2017 and July 2022 were statistically assessed. Samples with good quality were subjected to full genome sequencing on the Illumina Next Seq 500 platform and the genome data were analysed for the presence of mutations. The effect of the mutations of interest was studied via an in silico computational approach using SWISS-MODEL and AlphaFold2 programs. The predominance of DENV-4 was discovered from 2021 to 2022, with a prevalence of 64.3% (n = 9/14) and 89.2% (n = 33/37), respectively. Two clades with a genetic divergence of 2.8% were observed within the dominant genotype IIa. The majority of DENV-4-infected patients presented with gastrointestinal symptoms, such as vomiting (46.7%), persistent diarrhoea (30.7%) and abdominal pain (13.3%). Two mutations, His50Tyr and Pro144Ser, located at the wing domain of the NS1 protein were discovered to be unique to the recently sequenced DENV-4.
Collapse
Affiliation(s)
- Jeyanthi Suppiah
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (M.M.S.Z.)
| | - Ernie Zuraida Ali
- Inborn Error of Metabolism and Genetic Unit, Nutrition, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia
| | - Mohd Khairul Nizam Mohd Khalid
- Inborn Error of Metabolism and Genetic Unit, Nutrition, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia
| | - Sumarni Mohd Ghazali
- Biomedical Epidemiology Unit, Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Murni Maya Sari Zulkifli
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (M.M.S.Z.)
| | - Nuraisyah Ramli
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (M.M.S.Z.)
| | - Amir Hussin Adiee
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (M.M.S.Z.)
| | - Muhamad Nurrani Ramly
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (M.M.S.Z.)
| | - Fionie Robert
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (M.M.S.Z.)
| | - Sarbhan Singh Lakha Singh
- Biomedical Epidemiology Unit, Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia
| | - Rozainanee Mohd Zain
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (M.M.S.Z.)
| | - Ravindran Thayan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (M.M.S.Z.)
| |
Collapse
|
3
|
Magalhães ICL, Souza PFN, Marques LEC, Girão NM, Araújo FMC, Guedes MIF. New insights into the recombinant proteins and monoclonal antibodies employed to immunodiagnosis and control of Zika virus infection: A review. Int J Biol Macromol 2022; 200:139-150. [PMID: 34998869 DOI: 10.1016/j.ijbiomac.2021.12.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
An emergent positive-stranded RNA virus, transmitted by mosquitoes with its first case of vertical transmission confirmed in 2015 in Brazil. The Zika virus (ZIKV) fever has received particular attention, mainly related to neurological diseases such as microcephaly in newborns. However, the laboratory diagnosis for ZIKV still faces some challenges due to its cross-reactivity with other flaviviruses, requiring a correct and differential diagnosis, contributing to the good prognosis of patients, especially in pregnant women. Among these, for early diagnosis, the CDC considers the RT-PCR the gold standard, more sensitive and specific, but expensive. Serological tests for the diagnosis of ZIKV can also be found beyond the period when the viral components are detectable in the serum. Inputs to produce more sensitive and specific diagnostic kits and the possibility of viral detection in less invasive samples are among the objectives of recent research on ZIKV. This review outlines recent advances in developing recombinant antigen and antibody-based diagnostic tools for the main flaviviruses in Northeast Brazil, such as ZIKV and Dengue virus (DENV).
Collapse
Affiliation(s)
- Ilana C L Magalhães
- Biotechnology and Molecular Biology Laboratory, State University of Ceara, Fortaleza, Ceara, Brazil.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Defense Proteins, Federal University of Ceara, Fortaleza, Brazil.
| | - Lívia E C Marques
- Biotechnology and Molecular Biology Laboratory, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Nicolas M Girão
- Biotechnology and Molecular Biology Laboratory, State University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Maria Izabel F Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
4
|
Development of a Dengue Virus Serotype-Specific Non-Structural Protein 1 Capture Immunochromatography Method. SENSORS 2021; 21:s21237809. [PMID: 34883813 PMCID: PMC8659457 DOI: 10.3390/s21237809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Four serotypes of dengue virus (DENV), type 1 to 4 (DENV-1 to DENV-4), exhibit approximately 25–40% of the difference in the encoded amino acid residues of viral proteins. Reverse transcription of RNA extracted from specimens followed by PCR amplification is the current standard method of DENV serotype determination. However, since this method is time-consuming, rapid detection systems are desirable. We established several mouse monoclonal antibodies directed against DENV non-structural protein 1 and integrated them into rapid DENV detection systems. We successfully developed serotype-specific immunochromatography systems for all four DENV serotypes. Each system can detect 104 copies/mL in 15 min using laboratory and clinical isolates of DENV. No cross-reaction between DENV serotypes was observed in these DENV isolates. We also confirmed that there was no cross-reaction with chikungunya, Japanese encephalitis, Sindbis, and Zika viruses. Evaluation of these systems using serum from DENV-infected individuals indicated a serotype specificity of almost 100%. These assay systems could accelerate both DENV infection diagnosis and epidemiologic studies in DENV-endemic areas.
Collapse
|