1
|
Islam SI, Sanjida S, Ahmed SS, Almehmadi M, Allahyani M, Aljuaid A, Alsaiari AA, Halawi M. Core Proteomics and Immunoinformatic Approaches to Design a Multiepitope Reverse Vaccine Candidate against Chagas Disease. Vaccines (Basel) 2022; 10:vaccines10101669. [PMID: 36298534 PMCID: PMC9607777 DOI: 10.3390/vaccines10101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Chagas disease is a tropical ailment indigenous to South America and caused by the protozoan parasite Trypanosoma cruzi, which has serious health consequences globally. Insect vectors transmit the parasite and, due to the lack of vaccine availability and limited treatment options, we implemented an integrated core proteomics analysis to design a reverse vaccine candidate based on immune epitopes for disease control. Firstly, T. cruzi core proteomics was used to identify immunodominant epitopes. Therefore, we designed the vaccine sequence to be non-allergic, antigenic, immunogenic, and to have better solubility. After predicting the tertiary structure, docking and molecular dynamics simulation (MDS) were performed with TLR4, MHC-I, and MHC-II receptors to discover the binding affinities. The final vaccine design demonstrated significant hydrogen bond interactions upon docking with TLR4, MHC-I, and MHC-II receptors. This indicated the efficacy of the vaccine candidate. A server-based immune simulation approach was generated to predict the efficacy. Significant structural compactness and binding stability were found based on MDS. Finally, by optimizing codons on Escherichia coli K12, a high GC content and CAI value were obtained, which were then incorporated into the cloning vector pET2+ (a). Thus, the developed vaccine sequence may be a viable therapy option for Chagas disease.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: or
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mustafa Halawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 54943, Saudi Arabia
| |
Collapse
|