1
|
Chagas MDS, Trindade dos Santos M, Argollo de Menezes M, da Silva FAB. Boolean model of the gene regulatory network of Pseudomonas aeruginosa CCBH4851. Front Microbiol 2023; 14:1274740. [PMID: 38152377 PMCID: PMC10752298 DOI: 10.3389/fmicb.2023.1274740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Pseudomonas aeruginosa infections are one of the leading causes of death in immunocompromised patients with cystic fibrosis, diabetes, and lung diseases such as pneumonia and bronchiectasis. Furthermore, P. aeruginosa is one of the main multidrug-resistant bacteria responsible for nosocomial infections worldwide, including the multidrug-resistant CCBH4851 strain isolated in Brazil. Methods One way to analyze their dynamic cellular behavior is through computational modeling of the gene regulatory network, which represents interactions between regulatory genes and their targets. For this purpose, Boolean models are important predictive tools to analyze these interactions. They are one of the most commonly used methods for studying complex dynamic behavior in biological systems. Results and discussion Therefore, this research consists of building a Boolean model of the gene regulatory network of P. aeruginosa CCBH4851 using data from RNA-seq experiments. Next, the basins of attraction are estimated, as these regions and the transitions between them can help identify the attractors, representing long-term behavior in the Boolean model. The essential genes of the basins were associated with the phenotypes of the bacteria for two conditions: biofilm formation and polymyxin B treatment. Overall, the Boolean model and the analysis method proposed in this work can identify promising control actions and indicate potential therapeutic targets, which can help pinpoint new drugs and intervention strategies.
Collapse
|
2
|
Dos Santos PAS, Rodrigues YC, Marcon DJ, Lobato ARF, Cazuza TB, Gouveia MIM, Silva MJA, Souza AB, Lima LNGC, Quaresma AJPG, Brasiliense DM, Lima KVB. Endemic High-Risk Clone ST277 Is Related to the Spread of SPM-1-Producing Pseudomonas aeruginosa during the COVID-19 Pandemic Period in Northern Brazil. Microorganisms 2023; 11:2069. [PMID: 37630629 PMCID: PMC10457858 DOI: 10.3390/microorganisms11082069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa is a high-priority bacterial agent that causes healthcare-acquired infections (HAIs), which often leads to serious infections and poor prognosis in vulnerable patients. Its increasing resistance to antimicrobials, associated with SPM production, is a case of public health concern. Therefore, this study aims to determine the antimicrobial resistance, virulence, and genotyping features of P. aeruginosa strains producing SPM-1 in the Northern region of Brazil. To determine the presence of virulence and resistance genes, the PCR technique was used. For the susceptibility profile of antimicrobials, the Kirby-Bauer disk diffusion method was performed on Mueller-Hinton agar. The MLST technique was used to define the ST of the isolates. The exoS+/exoU- virulotype was standard for all strains, with the aprA, lasA, toxA, exoS, exoT, and exoY genes as the most prevalent. All the isolates showed an MDR or XDR profile against the six classes of antimicrobials tested. HRC ST277 played a major role in spreading the SPM-1-producing P. aeruginosa strains.
Collapse
Affiliation(s)
- Pabllo Antonny Silva Dos Santos
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Department of Natural Science, State University of Pará (DCNA/UEPA), Belém 66050-540, PA, Brazil
| | - Davi Josué Marcon
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Amália Raiana Fonseca Lobato
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Thalyta Braga Cazuza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Alex Brito Souza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Luana Nepomuceno Gondim Costa Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
| | - Danielle Murici Brasiliense
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Karla Valéria Batista Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (D.J.M.); (L.N.G.C.L.); (D.M.B.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (A.R.F.L.); (T.B.C.); (M.I.M.G.); (M.J.A.S.); (A.B.S.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
3
|
Chagas MDS, Medeiros F, dos Santos MT, de Menezes MA, Carvalho-Assef APD, da Silva FAB. An updated gene regulatory network reconstruction of multidrug-resistant Pseudomonas aeruginosa CCBH4851. Mem Inst Oswaldo Cruz 2022; 117:e220111. [PMID: 36259790 PMCID: PMC9565603 DOI: 10.1590/0074-02760220111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Healthcare-associated infections due to multidrug-resistant (MDR) bacteria such as Pseudomonas aeruginosa are significant public health issues worldwide. A system biology approach can help understand bacterial behaviour and provide novel ways to identify potential therapeutic targets and develop new drugs. Gene regulatory networks (GRN) are examples of in silico representation of interaction between regulatory genes and their targets. OBJECTIVES In this work, we update the MDR P. aeruginosa CCBH4851 GRN reconstruction and analyse and discuss its structural properties. METHODS We based this study on the gene orthology inference methodology using the reciprocal best hit method. The P. aeruginosa CCBH4851 genome and GRN, published in 2019, and the P. aeruginosa PAO1 GRN, published in 2020, were used for this update reconstruction process. FINDINGS Our result is a GRN with a greater number of regulatory genes, target genes, and interactions compared to the previous networks, and its structural properties are consistent with the complexity of biological networks and the biological features of P. aeruginosa. MAIN CONCLUSIONS Here, we present the largest and most complete version of P. aeruginosa GRN published to this date, to the best of our knowledge.
Collapse
Affiliation(s)
- Márcia da Silva Chagas
- Fundação Oswaldo Cruz-Fiocruz, Programa de Computação Científica, Rio de Janeiro, RJ, Brasil,+ Corresponding authors: /
| | - Fernando Medeiros
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia, Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Rio de Janeiro, RJ, Brasil
| | | | | | | | | |
Collapse
|
4
|
Unravelling complex transposable elements surrounding bla GES-16 in a Pseudomonas aeruginosa ExoU strain. J Glob Antimicrob Resist 2022; 30:143-147. [PMID: 35447384 DOI: 10.1016/j.jgar.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES We characterised the complex surrounding regions of blaGES-16 in a Pseudomonas aeruginosa exoU+ strain (P-10.226) in Brazil. METHODS Species identification was performed by MALDI-TOF MS, and the antimicrobial susceptibility profile was determined by broth microdilution based on European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. The whole genome sequencing (WGS) of P-10.226 strain was performed using both short-read paired-end sequencing on the Illumina MiSeq platform as well as the long-read Oxford Nanopore MinION. RESULTS WGS analysis showed that P-10.226 carried blaGES-16, which was found as a gene cassette inserted into a novel class I integron, In1992 (aadB-blaOXA-56-blaGES-16-aadB-aadA6c), whose 3'-CS was truncated by a nested transposable element, IS5564::ISPa157. The structure was even more complex since IS6100-ΔIS6100 structure and a TnAs2-like harbouring the operon merRTPADE was found downstream In1992. Fragments of TnAs3 harbouring 25-bp imperfect inverted repeats were identified bordering the intl1 of In1992 and also flanking IS6100-ΔIS6100, which might be genetic marks of its previous presence in the genome. Interestingly, In1992 also shows a distinct cassette array from In581 (blaGES-16-dfrA22-aacA27-aadA1), which was previously reported in Serratia marcescens strains recovered in Brazil. Finally, exoU gene, which encodes a potent cytotoxin of type III secretion systems (T3SS) effector proteins from P. aeruginosa and is associated to severe infections, was also detected. CONCLUSION We described the novel In1992 carrying blaGES-16 surrounded by complex transposition events in a XDR P. aeruginosa strain. The identification of many sets of direct repeats adjacent to TnAs3 fragments indicates a major past of transposition events that shaped the current genetic environment of In1992.
Collapse
|
5
|
Esposito F, Cardoso B, Fontana H, Fuga B, Cardenas-Arias A, Moura Q, Fuentes-Castillo D, Lincopan N. Genomic Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated From Urban Rivers Confirms Spread of Clone Sequence Type 277 Carrying Broad Resistome and Virulome Beyond the Hospital. Front Microbiol 2021; 12:701921. [PMID: 34539602 PMCID: PMC8446631 DOI: 10.3389/fmicb.2021.701921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The dissemination of antibiotic-resistant priority pathogens beyond hospital settings is both a public health and an environmental problem. In this regard, high-risk clones exhibiting a multidrug-resistant (MDR) or extensively drug-resistant (XDR) phenotype have shown rapid adaptation at the human-animal-environment interface. In this study, we report genomic data and the virulence potential of the carbapenemase, São Paulo metallo-β-lactamase (SPM-1)-producing Pseudomonas aeruginosa strains (Pa19 and Pa151) isolated from polluted urban rivers, in Brazil. Bioinformatic analysis revealed a wide resistome to clinically relevant antibiotics (carbapenems, aminoglycosides, fosfomycin, sulfonamides, phenicols, and fluoroquinolones), biocides (quaternary ammonium compounds) and heavy metals (copper), whereas the presence of exotoxin A, alginate, quorum sensing, types II, III, and IV secretion systems, colicin, and pyocin encoding virulence genes was associated with a highly virulent behavior in the Galleria mellonella infection model. These results confirm the spread of healthcare-associated critical-priority P. aeruginosa belonging to the MDR sequence type 277 (ST277) clone beyond the hospital, highlighting that the presence of these pathogens in environmental water samples can have clinical implications for humans and other animals.
Collapse
Affiliation(s)
- Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Cardenas-Arias
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Diversity and Distribution of Resistance Markers in Pseudomonas aeruginosa International High-Risk Clones. Microorganisms 2021; 9:microorganisms9020359. [PMID: 33673029 PMCID: PMC7918723 DOI: 10.3390/microorganisms9020359] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa high-risk clones are disseminated worldwide and they are common causative agents of hospital-acquired infections. In this review, we will summarize available data of high-risk P. aeruginosa clones from confirmed outbreaks and based on whole-genome sequence data. Common feature of high-risk clones is the production of beta-lactamases and among metallo-beta-lactamases NDM, VIM and IMP types are widely disseminated in different sequence types (STs), by contrast FIM type has been reported in ST235 in Italy, whereas GIM type in ST111 in Germany. In the case of ST277, it is most frequently detected in Brazil and it carries a resistome linked to blaSPM. Colistin resistance develops among P. aeruginosa clones in a lesser extent compared to other resistance mechanisms, as ST235 strains remain mainly susceptible to colistin however, some reports described mcr positive P. aeurigonsa ST235. Transferable quinolone resistance determinants are detected in P. aeruginosa high-risk clones and aac(6′)-Ib-cr variant is the most frequently reported as this determinant is incorporated in integrons. Additionally, qnrVC1 was recently detected in ST773 in Hungary and in ST175 in Spain. Continuous monitoring and surveillance programs are mandatory to track high-risk clones and to analyze emergence of novel clones as well as novel resistance determinants.
Collapse
|
8
|
do Nascimento APB, Medeiros Filho F, Pauer H, Antunes LCM, Sousa H, Senger H, Albano RM, Trindade Dos Santos M, Carvalho-Assef APD, da Silva FAB. Characterization of a SPM-1 metallo-beta-lactamase-producing Pseudomonas aeruginosa by comparative genomics and phenotypic analysis. Sci Rep 2020; 10:13192. [PMID: 32764694 PMCID: PMC7413544 DOI: 10.1038/s41598-020-69944-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common pathogens related to healthcare-associated infections. The Brazilian isolate, named CCBH4851, is a multidrug-resistant clone belonging to the sequence type 277. The antimicrobial resistance mechanisms of the CCBH4851 strain are associated with the presence of the bla\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\text {SPM-1}$$\end{document}SPM-1 gene, encoding a metallo-beta-lactamase, in combination with other exogenously acquired genes. Whole-genome sequencing studies focusing on emerging pathogens are essential to identify key features of their physiology that may lead to the identification of new targets for therapy. Using both Illumina and PacBio sequencing data, we obtained a single contig representing the CCBH4851 genome with annotated features that were consistent with data reported for the species. However, comparative analysis with other Pseudomonas aeruginosa strains revealed genomic differences regarding virulence factors and regulatory proteins. In addition, we performed phenotypic assays that revealed CCBH4851 is impaired in bacterial motilities and biofilm formation. On the other hand, CCBH4851 genome contained acquired genomic islands that carry transcriptional factors, virulence and antimicrobial resistance-related genes. Presence of single nucleotide polymorphisms in the core genome, mainly those located in resistance-associated genes, suggests that these mutations may also influence the multidrug-resistant behavior of CCBH4851. Overall, characterization of Pseudomonas aeruginosa CCBH4851 complete genome revealed the presence of features that strongly relates to the virulence and antibiotic resistance profile of this important infectious agent.
Collapse
Affiliation(s)
| | | | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-361, Brazil
| | - Luis Caetano Martha Antunes
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-361, Brazil.,Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210, Brazil
| | - Hério Sousa
- Departamento de Computação, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Hermes Senger
- Departamento de Computação, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | | | | | | |
Collapse
|
9
|
Silveira MC, Rocha-de-Souza CM, Albano RM, de Oliveira Santos IC, Carvalho-Assef APD. Exploring the success of Brazilian endemic clone Pseudomonas aeruginosa ST277 and its association with the CRISPR-Cas system type I-C. BMC Genomics 2020; 21:255. [PMID: 32293244 PMCID: PMC7092672 DOI: 10.1186/s12864-020-6650-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Brazilian endemic clone Pseudomonas aeruginosa ST277 carries important antibiotic resistance determinants, highlighting the gene coding for SPM-1 carbapenemase. However, the resistance and persistence of this clone is apparently restricted to the Brazilian territory. To understand the differences between Brazilian strains from those isolated in other countries, we performed a phylogenetic analysis of 47 P. aeruginosa ST277 genomes as well as analyzed the virulence and resistance gene profiles. Furthermore, we evaluated the distribution of genomic islands and assessed in detail the characteristics of the CRISPR-Cas immunity system in these isolates. RESULTS The Brazilian genomes presented a typical set of resistance and virulence determinants, genomic islands and a high frequency of the CRISPR-Cas system type I-C. Even though the ST277 genomes are closely related, the phylogenetic analysis showed that the Brazilian strains share a great number of exclusively SNPs when compared to other ST277 genomes. We also observed a standard CRISPR spacers content for P. aeruginosa ST277, confirming a strong link between sequence type and spacer acquisition. Most CRISPR spacer targets were phage sequences. CONCLUSIONS Based on our findings, P. aeruginosa ST277 strains circulating in Brazil characteristically acquired In163 and PAGI-25, which can distinguish them from strains that do not accumulate resistance mechanisms and can be found on the Asian, European and North American continents. The distinctive genetic elements accumulated in Brazilian samples can contribute to the resistance, pathogenicity and transmission success that characterize the ST277 in this country.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, andar 4, Vila Isabel, Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil
| | - Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
10
|
Merigueti TC, Carneiro MW, Carvalho-Assef APD, Silva-Jr FP, da Silva FAB. FindTargetsWEB: A User-Friendly Tool for Identification of Potential Therapeutic Targets in Metabolic Networks of Bacteria. Front Genet 2019; 10:633. [PMID: 31333719 PMCID: PMC6620235 DOI: 10.3389/fgene.2019.00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Healthcare-associated infections (HAIs) are a serious public health problem. They can be associated with morbidity and mortality and are responsible for the increase in patient hospitalization. Antimicrobial resistance among pathogens causing HAI has increased at alarming levels. In this paper, a robust method for analyzing genome-scale metabolic networks of bacteria is proposed in order to identify potential therapeutic targets, along with its corresponding web implementation, dubbed FindTargetsWEB. The proposed method assumes that every metabolic network presents fragile genes whose blockade will impair one or more metabolic functions, such as biomass accumulation. FindTargetsWEB automates the process of identification of such fragile genes using flux balance analysis (FBA), flux variability analysis (FVA), extended Systems Biology Markup Language (SBML) file parsing, and queries to three public repositories, i.e., KEGG, UniProt, and DrugBank. The web application was developed in Python using COBRApy and Django. Results: The proposed method was demonstrated to be robust enough to process even non-curated, incomplete, or imprecise metabolic networks, in addition to integrated host-pathogen models. A list of potential therapeutic targets and their putative inhibitors was generated as a result of the analysis of Pseudomonas aeruginosa metabolic networks available in the literature and a curated version of the metabolic network of a multidrug-resistant P. aeruginosa strain belonging to a clone endemic in Brazil (P. aeruginosa ST277). Genome-scale metabolic networks of other gram-positive and gram-negative bacteria, such as Staphylococcus aureus, Klebsiella pneumoniae, and Haemophilus influenzae, were also analyzed using FindTargetsWEB. Multiple potential targets have been found using the proposed method in all metabolic networks, including some overlapping between two or more pathogens. Among the potential targets, several have been previously reported in the literature as targets for antimicrobial development, and many targets have approved drugs. Despite similarities in the metabolic network structure for closely related bacteria, we show that the method is able to selectively identify targets in pathogenic versus non-pathogenic organisms. Conclusions: This new computational system can give insights into the identification of new candidate therapeutic targets for pathogenic bacteria and discovery of new antimicrobial drugs through genome-scale metabolic network analysis and heterogeneous data integration, even for non-curated or incomplete networks.
Collapse
Affiliation(s)
| | - Marcia Weber Carneiro
- Graduate Program in Biotechnology for Health and Investigative Medicine-Oswaldo Cruz Foundation (FIOCRUZ), Bahia, Brazil
| | - Ana Paula D'A Carvalho-Assef
- Research Laboratory in Hospital Infection (LAPIH), Oswaldo Cruz Institute-Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Floriano Paes Silva-Jr
- Laboratory of Experimental and Computational Biochemistry of Drugs (LaBECFar), Oswaldo Cruz Institute-Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Hwang W, Yoon SS. Virulence Characteristics and an Action Mode of Antibiotic Resistance in Multidrug-Resistant Pseudomonas aeruginosa. Sci Rep 2019; 9:487. [PMID: 30679735 PMCID: PMC6345838 DOI: 10.1038/s41598-018-37422-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa displays intrinsic resistance to many antibiotics and known to acquire actively genetic mutations for further resistance. In this study, we attempted to understand genomic and transcriptomic landscapes of P. aeruginosa clinical isolates that are highly resistant to multiple antibiotics. We also aimed to reveal a mode of antibiotic resistance by elucidating transcriptional response of genes conferring antibiotic resistance. To this end, we sequenced the whole genomes and profiled genome-wide RNA transcripts of three different multi-drug resistant (MDR) clinical isolates that are phylogenetically distant from one another. Multi-layered genome comparisons with genomes of antibiotic-susceptible P. aeruginosa strains and 70 other antibiotic-resistance strains revealed both well-characterized conserved gene mutations and distinct distribution of antibiotic-resistant genes (ARGs) among strains. Transcriptions of genes involved in quorum sensing and type VI secretion systems were invariably downregulated in the MDR strains. Virulence-associated phenotypes were further examined and results indicate that our MDR strains are clearly avirulent. Transcriptions of 64 genes, logically selected to be related with antibiotic resistance in MDR strains, were active under normal growth conditions and remained unchanged during antibiotic treatment. These results propose that antibiotic resistance is achieved by a "constitutive" response scheme, where ARGs are actively expressed even in the absence of antibiotic stress, rather than a "reactive" response. Bacterial responses explored at the transcriptomic level in conjunction with their genome repertoires provided novel insights into (i) the virulence-associated phenotypes and (ii) a mode of antibiotic resistance in MDR P. aeruginosa strains.
Collapse
Affiliation(s)
- Wontae Hwang
- Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
12
|
Medeiros Filho F, do Nascimento APB, dos Santos MT, Carvalho-Assef APD, da Silva FAB. Gene regulatory network inference and analysis of multidrug-resistant Pseudomonas aeruginosa. Mem Inst Oswaldo Cruz 2019; 114:e190105. [PMID: 31389522 PMCID: PMC6684008 DOI: 10.1590/0074-02760190105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/26/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Healthcare-associated infections caused by bacteria such as
Pseudomonas aeruginosa are a major public health
problem worldwide. Gene regulatory networks (GRN) computationally represent
interactions among regulatory genes and their targets. They are an important
approach to help understand bacterial behaviour and to provide novel ways of
overcoming scientific challenges, including the identification of potential
therapeutic targets and the development of new drugs. OBJECTIVES The goal of this study was to reconstruct the multidrug-resistant (MDR)
P. aeruginosa GRN and to analyse its topological
properties. METHODS The methodology used in this study was based on gene orthology inference
using the reciprocal best hit method. We used the genome of P.
aeruginosa CCBH4851 as the basis of the reconstruction process.
This MDR strain is representative of the sequence type 277, which was
involved in an endemic outbreak in Brazil. FINDINGS We obtained a network with a larger number of regulatory genes, target genes
and interactions as compared to the previously reported network. Topological
analysis results are in accordance with the complex network representation
of biological processes. MAIN CONCLUSIONS The properties of the network were consistent with the biological features
of P. aeruginosa. To the best of our knowledge, the
P. aeruginosa GRN presented here is the most complete
version available to date.
Collapse
|
13
|
Nascimento APB, Ortiz MF, Martins WMBS, Morais GL, Fehlberg LCC, Almeida LGP, Ciapina LP, Gales AC, Vasconcelos ATR. Intraclonal Genome Stability of the Metallo-β-lactamase SPM-1-producing Pseudomonas aeruginosa ST277, an Endemic Clone Disseminated in Brazilian Hospitals. Front Microbiol 2016; 7:1946. [PMID: 27994579 PMCID: PMC5136561 DOI: 10.3389/fmicb.2016.01946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/21/2016] [Indexed: 01/30/2023] Open
Abstract
Carbapenems represent the mainstay therapy for the treatment of serious P. aeruginosa infections. However, the emergence of carbapenem resistance has jeopardized the clinical use of this important class of compounds. The production of SPM-1 metallo-β-lactamase has been the most common mechanism of carbapenem resistance identified in P. aeruginosa isolated from Brazilian medical centers. Interestingly, a single SPM-1-producing P. aeruginosa clone belonging to the ST277 has been widely spread within the Brazilian territory. In the current study, we performed a next-generation sequencing of six SPM-1-producing P. aeruginosa ST277 isolates. The core genome contains 5899 coding genes relative to the reference strain P. aeruginosa PAO1. A total of 26 genomic islands were detected in these isolates. We identified remarkable elements inside these genomic islands, such as copies of the blaSPM−1 gene conferring resistance to carbapenems and a type I-C CRISPR-Cas system, which is involved in protection of the chromosome against foreign DNA. In addition, we identified single nucleotide polymorphisms causing amino acid changes in antimicrobial resistance and virulence-related genes. Together, these factors could contribute to the marked resistance and persistence of the SPM-1-producing P. aeruginosa ST277 clone. A comparison of the SPM-1-producing P. aeruginosa ST277 genomes showed that their core genome has a high level nucleotide similarity and synteny conservation. The variability observed was mainly due to acquisition of genomic islands carrying several antibiotic resistance genes.
Collapse
Affiliation(s)
- Ana P B Nascimento
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Mauro F Ortiz
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Willames M B S Martins
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Guilherme L Morais
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Lorena C C Fehlberg
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Luiz G P Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Luciane P Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Ana C Gales
- Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Ana T R Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica Petrópolis, Brazil
| |
Collapse
|
14
|
Description of genomic islands associated to the multidrug-resistant Pseudomonas aeruginosa clone ST277. INFECTION GENETICS AND EVOLUTION 2016; 42:60-5. [DOI: 10.1016/j.meegid.2016.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
|
15
|
Fonseca EL, Marin MA, Encinas F, Vicente ACP. Full characterization of the integrative and conjugative element carrying the metallo-β-lactamaseblaSPM-1and bicyclomycinbcr1resistance genes found in the pandemicPseudomonas aeruginosaclone SP/ST277 : Figure 1. J Antimicrob Chemother 2015; 70:2547-50. [DOI: 10.1093/jac/dkv152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/14/2015] [Indexed: 11/14/2022] Open
|