1
|
El Moshy S, Radwan IA, Matoug-Elwerfelli M, Abdou A, Abbass MMS. A Novel Nano-Hydroxyapatite Agarose-Based Hydrogel for Biomimetic Remineralization of Demineralized Human Enamel: An in-vitro Study. Clin Cosmet Investig Dent 2024; 16:453-465. [PMID: 39507288 PMCID: PMC11539681 DOI: 10.2147/ccide.s478045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose This study aims to investigate the biomimetic effect of agarose hydrogel loaded with enamel matrix derivative (EMD-agarose) alone or in combination with nano-hydroxyapatite (n-HA-EMD-agarose) on the remineralization of human demineralized enamel. Methods Extracted human mandibular third molars were sectioned into 54 buccal and lingual halves. Acid-resistant nail varnish was applied to each half, except for two enamel windows. Enamel surface microhardness, energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) analyses were conducted to evaluate enamel surfaces at baseline, following demineralization with 37% phosphoric acid, and after each hydrogel application and remineralization for two, four, and six days. Remineralization was performed using a phosphate solution at 37°C. Results At day 6 following remineralization, a statistically significant higher mean microhardness was recorded in n-HA-EMD-agarose hydrogel (260.87 ± 3.52) as compared to EMD-agarose hydrogel (244.63 ± 2.76) (p = 0.027). Similarly, n-HA-EMD-agarose hydrogel showed a higher mean calcium (46.31 ± 2.78), phosphorous (24.92 ± 0.826), and fluoride (0.909 ± 0.053) weight percentage compared to EMD-agarose hydrogel calcium (19.64 ± 1.092), phosphorous (19.64 ± 1.092), and fluoride (0.7033 ± 0.0624) weight percentage (p < 0.05). Further, SEM analysis revealed a substantial deposition of n-HA following the application of the n-HA-EMD-agarose hydrogel, whereas the EMD-agarose exhibited a relatively smooth enamel surface with less visible enamel rods due to mineral deposition. Conclusion The combined n-HA-EMD-agarose hydrogel demonstrated improved surface microhardness of the remineralized enamel and enhanced mineral content deposition, indicating its potential as a biomimetic approach for dental enamel repair.
Collapse
Affiliation(s)
- Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Manal Matoug-Elwerfelli
- Pre-clinical Oral Sciences Department, College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed Abdou
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Marwa M S Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Asadi M, Majidinia S, Bagheri H, Hoseinzadeh M. The Effect of Formulated Dentin Remineralizing Gel Containing Hydroxyapatite, Fluoride, and Bioactive Glass on Dentin Microhardness: An In Vitro Study. Int J Dent 2024; 2024:4788668. [PMID: 39376678 PMCID: PMC11458271 DOI: 10.1155/2024/4788668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024] Open
Abstract
Objectives This study aimed to develop a gel with dentin-remineralizing properties, integrating nano-hydroxyapatite (nHA), sodium fluoride (NaF), and bioactive glass (BG). Materials and Methods The enamel layer of 40 bovine incisors was removed. The samples were allocated into four groups of 10 each, based on varying concentrations of nHA, BG, and NaF in the gel compositions (wt%): (1) 2.5%-7.5%-0.05%, (2) 5%-5%-0.05%, (3) 7.5%-2.5%-0.05%, and (4) a control group with a base gel lacking remineralizing agents. After 8 hr of demineralization, the dentin surface microhardness was measured at depths of 30, 60, and 140 µm. After a 20-day pH cycling, the percentage of surface microhardness recovery (SMHR%) was measured and compared among the groups using the ANOVA and Tukey HSD post hoc tests (α = 0.05). Scanning electron microscopy analysis evaluated each specimen's superficial morphology. Results At all depths, the SMHR% of the Group 2 and Group 3 was significantly higher than the control group (p < 0.05). The SMHR% Group 1 (67.39% ± 29.34%) was significantly higher than the control group (-21.24% ± 51.72%) only at the depth of 30 μm (p = 0.047). Group 3 had higher SMHR% than Group 2 at all depths; however, the difference was not statistically significant. Moreover, the SMHR% of Group 3 was significantly higher than that of Group 1 at depths of 30 μm (187. 94% ± 68.95% vs. 67.39% ± 29.34%; p = 0.005) and 60 μm (179.55% ± 75.96% vs. 64.34% ± 41.96%; p = 0.043). Surface deposition and tubule occlusion were observed in the Groups 2 and 3 samples, which was more prominent in the latter. Conclusions Combining 7.5% nHA, 2.5% BG, and 0.05% NaF could potentially remineralize primary carious lesions.
Collapse
Affiliation(s)
- Mohadese Asadi
- Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Majidinia
- Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bagheri
- Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Hoseinzadeh
- Dental Research Center, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Hamed S, Abd El Latief MH, El-Wassefy NA, Montasser MA. Fluoride-amorphous calcium phosphate and biomimetic nano-hydroxyapatite for enamel remineralization: An in-vitro study of surface microhardness and composition. Int Orthod 2024; 22:100865. [PMID: 38457899 DOI: 10.1016/j.ortho.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
AIM Fluoride-Amorphous Calcium Phosphate and Biomimetic Nano-Hydroxyapatite for Enamel Remineralization; An In-Vitro Study of Surface Microhardness and Composition. MATERIAL AND METHODS Ninety-six extracted human premolars with sound buccal surface were divided using a randomization computer-generating software into four groups; Group I (control) sound untreated enamel, Group II (demineralized) demineralized to create white spot lesions, Group III (biom-n-HA) demineralized and then treated with biomimetic nanohydroxyapatite cream, and Group IV (F-ACP) demineralized and then treated using Fluoride-Amorphous Calcium Phosphate varnish. Each group was divided into two subgroups; subgroup "A" evaluated for mineral content using energy dispersive x-ray spectroscopy (EDX) and for surface microhardness using the Vickers microhardness test and Subgroup "B" evaluated for white spot lesion depth using a polarized light microscope (PLM). RESULTS The highest microhardness (VHN) was found in the (F-ACP) group (mean=428.61±54.43) and then in the (Biom-n-HA) group (mean=408.11±70.16) followed by the (Control) group (mean=402.13±53.40) with no significant difference between them and finally in the significantly different (Demineralized) group (mean=256.99±45.83). The weight percentage of Ca (30.29±1.04 and 33.44±1.07) and Ca/P ratio (1.87±0.06 and 2.03±0.05) were significantly different between Group III and Group IV respectively. PLM measurements in Group II (198.83μm), Group III (60.17μm), and Group IV (26.33μm) were significantly different. CONCLUSIONS Both the (Biom-n-HA) cream and the (F-ACP) varnish showed promising results for enamel remineralization. The increased enamel surface microhardness was consistent with the mineral content and the changes in the birefringence.
Collapse
Affiliation(s)
- Sameh Hamed
- Department of Orthodontics, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | | | - Noha A El-Wassefy
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Mona A Montasser
- Department of Orthodontics, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
4
|
Carvalho TS, Martini T, Lima KP, Araújo TT, Feitosa CMVB, Marron LR, Lavender S, Grizzo LT, Magalhães AC, Buzalaf MAR. Xylitol associated or not with fluoride: Is the action the same on de- and remineralization? Arch Oral Biol 2024; 159:105873. [PMID: 38215591 DOI: 10.1016/j.archoralbio.2023.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVES This study evaluated the effect of xylitol combined or not with fluoride (F) on reduction of demineralization and increase of remineralization of shallow and deep artificial enamel lesions. METHODS Bovine enamel samples were allocated to the following solutions groups: no xylitol (negative control), 5% xylitol, 10% xylitol, 20% xylitol, 500 ppm F (as NaF), 5% xylitol+F, 10% xylitol+F or 20% xylitol+F (n = 12-15). For the demin study, a pH-cycling model (demineralization-6 h, pH 4.7/remineralization 18 h, pH 7.0) was employed for 7 days. Treatments were applied 2 × 1 min. In the remin study, specimens were pre-demineralized for 2, 5 or 10 days. Afterwards, a pH-cycling protocol was conducted (2 h demineralizing and 22 h remineralizing solution/day for 8 days) and the same treatments were done. The response variables were percentage surface hardness loss (%SHL) and transverse microradiography. Data were analyzed by RM ANOVA/Tukey or Kruskal-Wallis/Dunn (p < 0.05) RESULTS: F and Xylitol combined with F reduced the %SHL (23-30%) compared to the negative control (61.5%). The integrated mineral loss and the lesion depth were not reduced by any treatment. Surface hardness recovery was seen only for shallow lesions in case of 20% xylitol+F compared to negative control. No lesion depth recovery, but significant mineral recovery was seen for F (2-days and 10-days lesion). CONCLUSIONS All concentrations of xylitol+F reduced enamel surface demineralization, while only 20% xylitol+F improved surface remineralization of shallow lesions in vitro. CLINICAL SIGNIFICANCE Our results suggest that while F or any concentration of xylitol + F reduces surface demineralization, only 20% xylitol+F improves surface remineralization of shallow lesions in vitro. Therefore, xylitol may be added into oral products, combined to F, to control dental caries.
Collapse
Affiliation(s)
- Thamyris Souza Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Tatiana Martini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Karen Pavan Lima
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Tamara Teodoro Araújo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | | | | | - Larissa Tercilia Grizzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | |
Collapse
|
5
|
Abedi M, Ghasemi Y, Nemati MM. Nanotechnology in toothpaste: Fundamentals, trends, and safety. Heliyon 2024; 10:e24949. [PMID: 38317872 PMCID: PMC10838805 DOI: 10.1016/j.heliyon.2024.e24949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Several studies have revealed that healthcare nanomaterials are widely used in numerous areas of dentistry, including prevention, diagnosis, treatment, and repair. Nanomaterials in dental cosmetics are utilized to enhance the efficacy of toothpaste and other mouthwashes. Nanoparticles are added to toothpastes for a variety of reasons, including dental decay prevention, remineralization, hypersensitivity reduction, brightening, and antibacterial qualities. In this review, the benefits and uses of many common nanomaterials found in toothpaste are outlined. Additionally, the capacity and clinical applications of nanoparticles as anti-bacterial, whitening, hypersensitivity, and remineralizing agents in the treatment of dental problems and periodontitis are discussed.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Nimbeni BS, Nimbeni SB, Divakar DD, Samiullah M. Carboxymethyl Chitosan-Fluoride-doped Amorphous Calcium Phosphate: A Novel Remineralizing Gel. Int J Clin Pediatr Dent 2023; 16:734-739. [PMID: 38162237 PMCID: PMC10753104 DOI: 10.5005/jp-journals-10005-2669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Background There is a need for innovative remineralizing gel formulations based on calcium and phosphates that can slowly release fluoride ions and enhance the formation of fluorapatite crystals that are more resistant to dissolution in an acidic environment. Aim The aim of the work was to formulate a remineralizing agent that remineralizes enamel through the release of Ca2+, PO₄³-, and F- ions for a prolonged period of time. Materials and methods The gel was based on carboxymethyl chitosan (CMC) as a bioinspired gelling agent and on Fluoride-doped Amorphous Calcium Phosphate (F-ACP) as a remineralizing agent. This gel was tested in vitro on the enamel of extracted premolars after demineralization with methacrylic acid gel. Results When compared to the control group and demineralized enamel group, the enamel slabs remineralized with CMC/F-ACP showed a higher calcium phosphate ratio in Energy-Dispersive X-ray (EDX) and better surface morphology under scanning electron microscope (SEM). Conclusion Remineralization tests performed on demineralized human permanent teeth proved that CMC/F-ACP gel has excellent efficacy, inducing a complete remineralization of the outermost layers of enamel as well as a full restoration of lost mineral content. How to cite this article Nimbeni BS, Nimbeni SB, Divakar DD, et al. Carboxymethyl Chitosan-Fluoride-doped Amorphous Calcium Phosphate: A Novel Remineralizing Gel. Int J Clin Pediatr Dent 2023;16(5):734-739.
Collapse
Affiliation(s)
| | - Shruti B Nimbeni
- Department of Pediatric Dentistry, Mustaqbal University, Buraydah, Al Qassim, Saudi Arabia
| | - Darshan D Divakar
- Department of Dental Health, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Samiullah
- Department of Global Regulatory Affairs, SPIMACO ADDWAEIH, Buraidah, Al Qassim, Saudi Arabia
| |
Collapse
|
7
|
Imran E, Cooper PR, Ratnayake J, Ekambaram M, Mei ML. Potential Beneficial Effects of Hydroxyapatite Nanoparticles on Caries Lesions In Vitro-A Review of the Literature. Dent J (Basel) 2023; 11:40. [PMID: 36826185 PMCID: PMC9955150 DOI: 10.3390/dj11020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental caries is one of the most common human diseases which can occur in both primary and permanent dentitions throughout the life of an individual. Hydroxyapatite is the major inorganic component of human teeth, consequently, nanosized hydroxyapatite (nHAP) has recently attracted researchers' attention due to its unique properties and potential for caries management. This article provides a contemporary review of the potential beneficial effects of nHAP on caries lesions demonstrated in in vitro studies. Data showed that nHAP has potential to promote mineralization in initial caries, by being incorporated into the porous tooth structure, which resulted from the caries process, and subsequently increased mineral content and hardness. Notably, it is the particle size of nHAP which plays an important role in the mineralization process. Antimicrobial effects of nHAP can also be achieved by metal substitution in nHAP. Dual action property (mineralizing and antimicrobial) and enhanced chemical stability and bioactivity of nHAP can potentially be obtained using metal-substituted fluorhydroxyapatite nanoparticles. This provides a promising synergistic strategy which should be explored in further clinical research to enable the development of dental therapeutics for use in the treatment and management of caries.
Collapse
Affiliation(s)
- Eisha Imran
- Department of Dental Materials, Islamabad Medical and Dental College, Islamabad 44000, Pakistan
| | - Paul R. Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jithendra Ratnayake
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Manikandan Ekambaram
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - May Lei Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
8
|
Satou R, Iwasaki M, Kamijo H, Sugihara N. Improved Enamel Acid Resistance Using Biocompatible Nano-Hydroxyapatite Coating Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7171. [PMID: 36295239 PMCID: PMC9609919 DOI: 10.3390/ma15207171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
In this study, we attempted to develop a dental caries prevention method using a bioapatite (BioHap), an eggshell-derived apatite with nanoparticle size and biocompatibility, with a high-concentration fluoride tooth surface application method. The enamel acid resistance after the application of the proposed method was compared with that of a conventional topical application of fluoride using bovine tooth enamel as an example. The tooth samples were divided into three groups based on the preventive treatment applied, and an acid challenge was performed. The samples were evaluated for acid resistance using qualitative and quantitative analytical methods. The BioHap group demonstrated reduced enamel loss and improved micro-Vickers hardness, along with a thick coating layer, decreased reaction area depth, and decreased mineral loss value and lesion depth. The combination of BioHap with high-concentration fluoride led to the formation of a thick coating layer on the enamel surface and better suppression of demineralization than the conventional method, both qualitatively and quantitatively. The proposed biocompatible nano-hydroxyapatite coating method is expected to become a new standard for providing professional care to prevent dental caries.
Collapse
Affiliation(s)
- Ryouichi Satou
- Department of Epidemiology and Public Health, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Miyu Iwasaki
- Department of Epidemiology and Public Health, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Hideyuki Kamijo
- Department of Social Security for Dentistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Naoki Sugihara
- Department of Epidemiology and Public Health, Tokyo Dental College, Tokyo 101-0061, Japan
| |
Collapse
|
9
|
Evaluation of Enamel Acid Resistance and Whitening Effect of the CAP System. Dent J (Basel) 2022; 10:dj10090161. [PMID: 36135156 PMCID: PMC9498263 DOI: 10.3390/dj10090161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to compare the effectiveness of a novel professional tooth-strengthening system and a conventional caries-prevention method that involved the use of high fluoride concentrations, to determine whether the system has a whitening effect. Bovine tooth-enamel samples were treated with fluoride gel (conventional APF method) or a mixture of citric acid gel, calcium phosphate (α-TCP), and fluoride gel, referred to as the CAP system; these treatments were performed to generate an acid-resistant layer on the enamel surface. For the evaluation of the acid resistance, a cyclic experiment, involving a 1-h remineralization and a 24-h acid treatment, was conducted thrice after the treatments. The height profiles were observed using a 3D-measuring laser microscope and the hardness was evaluated by Vickers hardness test. The morphological changes in the surface and cross-section of the enamel were observed by scanning electron microscopy. To evaluate the whitening effect, the enamel was ground until the color of the underlying dentin was recognizable; the CAP system was applied once, and the color change was measured using a color difference meter. As a result, it was confirmed that an acid-resistant layer was formed on the tooth surfaces treated with the CAP system, and a whitening effect was obtained.
Collapse
|
10
|
Guntermann L, Rohrbach A, Schäfer E, Dammaschke T. Remineralization and protection from demineralization: effects of a hydroxyapatite-containing, a fluoride-containing and a fluoride- and hydroxyapatite-free toothpaste on human enamel in vitro. Head Face Med 2022; 18:26. [PMID: 35831871 PMCID: PMC9278013 DOI: 10.1186/s13005-022-00330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background The aim was to evaluate the remineralization potential as well as the extent of protection against renewed demineralization of enamel by hydroxyapatite-containing toothpaste (Karex) in comparison to fluoride-containing (Elmex) and fluoride- and hydroxyapatite-free toothpaste (Ajona) as control. Methods Fifty-seven enamel samples were obtained from 19 human teeth. Five demarcated surfaces were created on each tooth (S0—S4). Four of the surfaces (S1—S4) were exposed to lactic acid (pH 3) for 8 h (demineralization). S0 was left untreated as control. S1 was solely treated with acid. After demineralization, S2 was exposed to Karex for 2 min, of which 15 s were brushing. S3 was treated with Elmex and S4 with Ajona, accordingly. Then, the samples were evaluated using a scanning electron microscope and ImageJ image analysis software to determine the percentage of demineralization. Afterwards, S2-S4 were again exposed to lactic acid for 2 h, and subjected to pixel analysis another time. Data were statistically analysed using ANOVA with post-hoc Scheffé test and the Kurskal-Wallis test. Results The surfaces treated with Elmex showed the lowest percentage of demineralization (mean 5.01 ± 0.98%) (p < 0.01). Thus, Elmex remineralized more effectively compared to Ajona (8.89 ± 1.41%) and Karex (9.85 ± 1.63%) (p < 0.01). Furthermore, Elmex showed the lowest percentage of demineralized enamel after new demineralization (median 6.29%), followed by Ajona (11.92%) and Karex (13.46%) (p < 0.001). Conclusion In terms of remineralization and protection against renewed demineralization, a hydroxyapatite-containing toothpaste (Karex) appears to be inferior to a fluoride-containing toothpaste (Elmex) and a fluoride- and hydroxyapatite-free toothpaste (Ajona). Hence, the recommendation to use Karex to protect against demineralization should be critically questioned.
Collapse
Affiliation(s)
| | - Arno Rohrbach
- Institute of Mineralogy, Westphalian Wilhelms-University, Corrensstr. 24, 48149, Münster, Germany
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, Westphalian Wilhelms-University, Waldeyerstr. 30, 48149, Münster, Germany
| | - Till Dammaschke
- Department of Periodontology and Operative Dentistry, Westphalian Wilhelms-University, Waldeyerstr. 30, 48149, Münster, Germany.
| |
Collapse
|
11
|
El-Desouky DI, Hanno A, Elhamouly Y, Hamza SA, El-Desouky LM, Dowidar KML. Preventive potential of nano silver fluoride versus sodium fluoride varnish on enamel caries like lesions in primary teeth: in vitro study. BMC Oral Health 2022; 22:244. [PMID: 35725433 PMCID: PMC9208095 DOI: 10.1186/s12903-022-02271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
Background Professionally applied topical fluoride preparations have been commonly used and have proven to prevent dental decay. Alternative preparations that provide further benefits may be of interest to investigate. This study aimed to investigate the effect of experimental nano silver fluoride (NSF) formulation compared to commercial sodium fluoride varnish (FV) on prevention of in vitro demineralization of initially sound enamel in primary teeth. Methods Forty-eight extracted/exfoliated sound molars were sectioned buccolingually into 96 specimens then assigned randomly into two equal groups. Each group was further subdivided into two equal subgroups (Ia: NSF, IIa: FV, Ib and IIb as negative controls). The test materials were applied, then all the specimens were subjected to a demineralization pH cycling model for 7 days. Specimens were examined for surface microhardness using Vickers microhardness device and lesion depth was evaluated by polarized light microscope using image J 1.46r software. Data were analyzed using paired t-test, independent t-test, and Mann Whitney U test. Results The test materials were significantly superior to their negative controls, (P < 0.001) and comparable to each other, (P > 0.05) regarding microhardness and lesion depth. In comparison to FV, NSF showed lower yet statistically insignificant percent increase in microhardness and decrease in lesion depth, (P = 0.81, 0.86, respectively). Qualitative evaluation revealed that both agents reduced the lesion depth formation. Conclusion NSF showed similar effect to that of FV in limiting in vitro enamel demineralization caused by acidic challenge. Hence, it could be regarded as a promising alternative preventive agent in primary teeth. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02271-6.
Collapse
Affiliation(s)
- Dina I El-Desouky
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Azza Hanno
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yasmine Elhamouly
- Department of Pediatric and Community Dentistry, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt.
| | - Sara A Hamza
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Lubna M El-Desouky
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Karin M L Dowidar
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Anil A, Ibraheem WI, Meshni AA, Preethanath RS, Anil S. Nano-Hydroxyapatite (nHAp) in the Remineralization of Early Dental Caries: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5629. [PMID: 35565022 PMCID: PMC9102186 DOI: 10.3390/ijerph19095629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
(1) Background: Nano-hydroxyapatite (nHAp) has been reported to have a remineralizing effect on early carious lesions. The objective of this scoping review was to analyze the remineralization potential of nano-hydroxyapatite (nHAp)-containing dentifrices, by mapping the existing literature. (2) Methods: This review was performed using the PRISMA-ScR Checklist, which is an extension of the PRISMA Checklist for Systematic Reviews and Meta-Analyses. In this study, the population, concept, and context (PCC) framework was used to find relevant papers published between 2010 and 2021. Nano-hydroxyapatite (nHAp) and dentifrices containing nHAp as one of the ingredients were the two main concepts of the research question. MeSH phrases, keywords, and other free terms relevant to nano-hydroxyapatite and dentifrices were used to search the literature databases. (3) Results: Preliminary searches yielded 59 studies; the title and abstract screening results excluded 11 studies. The remaining studies were thoroughly reviewed by two reviewers on the basis of the inclusion and exclusion criteria. Finally, 28 studies were included, and 20 studies were excluded. Most of the studies that were included reported that when nHAp was used alone, it had many different effects, such as remineralization, caries prevention, less demineralization, brighter teeth, less pain, and remineralization of enamel after orthodontic debonding. (4) Conclusions: Dentifrices that contain nHAp offer a variety of therapeutic and preventative effects. Currently, there is insufficient evidence to support the efficacy of nHAp dentifrices in primary teeth. Additional long-term investigations using standardized protocols are required to reach decisive conclusions about the effects of nHAp dentifrices on primary and permanent dentitions.
Collapse
Affiliation(s)
- Aiswarya Anil
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, India;
| | - Wael I. Ibraheem
- College of Dentistry, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (W.I.I.); (A.A.M.); (R.S.P.)
| | - Abdullah A. Meshni
- College of Dentistry, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (W.I.I.); (A.A.M.); (R.S.P.)
| | - Reghunathan S. Preethanath
- College of Dentistry, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (W.I.I.); (A.A.M.); (R.S.P.)
| | - Sukumaran Anil
- Oral Health Institute, Department of Dentistry, Hamad Medical Corporation, Doha 3050, Qatar
- College of Dental Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
13
|
Wierichs RJ, Wolf TG, Campus G, Carvalho TS. Efficacy of nano-hydroxyapatite on caries prevention-a systematic review and meta-analysis. Clin Oral Investig 2022; 26:3373-3381. [PMID: 35103837 PMCID: PMC8979882 DOI: 10.1007/s00784-022-04390-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/23/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION/OBJECTIVES The review systematically explored in vivo or in situ studies investigating the efficacy of nano-hydroxyapatite (nHA) to reduce initiation of or to remineralize initial caries lesions. DATA Prospective controlled (non-)randomized clinical trials investigating the efficacy of a nHA compared to any other (placebo) treatment or untreated/standard control. SOURCES Three electronic databases (Central Cochrane, PubMed-MEDLINE, Ovid EMBASE) were screened. Outcomes were, e.g., ICDAS score, laser fluorescence, enamel remineralization rate, mineral loss, and lesion depth. No language or time restrictions were applied. Risk of bias and level of evidence were graded using the Risk of Bias 2.0 tool and GRADE profiler. STUDY SELECTION/RESULTS Five in vivo (and 5 in situ) studies with at least 633 teeth (1031 specimens) being assessed in more than 420 (95) patients were included. No meta-analysis could be performed for in vivo studies due to the high heterogeneity of the study designs and the variety of outcomes. In situ studies indicate that under demineralization conditions, NaF was able to hinder demineralization, whereas nHA did not; simultaneously, nHA did not differ from the fluoride-free control. In contrast, under remineralizing conditions, nHA and NaF show the same remineralizing potential. However, the level of evidence was very low. Furthermore, six studies showed a high risk of bias, and six studies were funded/published by the manufacturers of the tested products. CONCLUSION The low number of clinical studies, the relatively short follow-up periods, the high risks of bias, and the limiting grade of evidence do not allow for conclusive evidence on the efficacy of nHA. CLINICAL RELEVANCE No conclusive evidence on the efficacy of nHA could be obtained based on the low number of clinical studies, the relatively short follow-up periods, the high risks of bias, the limiting grade of evidence, and study conditions that do not reflect the everyday conditions.
Collapse
Affiliation(s)
- Richard Johannes Wierichs
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3010, Bern, Switzerland.
| | - Thomas G Wolf
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3010, Bern, Switzerland
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Guglielmo Campus
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3010, Bern, Switzerland
- Department of Surgery, Microsurgery and Medicine Sciences, School of Dentistry, University of Sassari, Viale San Pietro 3/c, 07100, Sassari, Italy
- Faculty of Dentistry, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Thiago S Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
14
|
The use of hydroxyapatite toothpaste to prevent dental caries. Odontology 2021; 110:223-230. [PMID: 34807345 PMCID: PMC8930857 DOI: 10.1007/s10266-021-00675-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
Dissolution of hydroxyapatite from the tooth structure at low pH can lead to the irreversible destruction of enamel and dentin, which if left untreated can result in pain and tooth loss. Hydroxyapatite toothpastes contain hydroxyapatite particles in micro- or nanocrystalline form that have been shown to deposit and restore demineralized enamel surfaces. As such, they are currently being explored as a fluoride-free anti-caries agent. This narrative review article aims to summarize the recent findings of the research investigating the remineralization potential of HAP toothpaste in vitro, in situ and in vivo, as well as some other applications in dentistry.
Collapse
|
15
|
Moreira KM, Bertassoni LE, Davies RP, Joia F, Höfling JF, Nascimento FD, Puppin-Rontani RM. Impact of biomineralization on resin/biomineralized dentin bond longevity in a minimally invasive approach: An "in vitro" 18-month follow-up. Dent Mater 2021; 37:e276-e289. [PMID: 33608139 DOI: 10.1016/j.dental.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To determine the impact of treating caries-affected dentin (CAD) with: 0.2% sodium fluoride (NaF), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP/MI Paste™) or peptide P11-4 (Curodont™ Repair) on the longevity of resin/CAD interface at storage times of 24 -h, 6- and 18-month. METHODS 255 caries-free third molars were used, and CAD was produced by a biological method. The teeth were randomly distributed into: G1- Sound dentin (SD); G2- CAD; G3- CAD + 0.2% NaF (CAD/NaF); G4- CAD + CPP-ACP (CAD/ACP); G5- CAD + Curodont™ Repair (CAD/P11-4). The Filtek Z350 composite resin block was bonded to dentin using Adper™ Single 2 (4 mm/height). Resin/dentin blocks were stored in a solution of Simulated Body Fluid at 37 °C, pressures were modified to simulate natural pulpal pressures. Specimens were investigated by microtensile bond strength (μTBS) (n = 8), Scanning Electron Microscopy (to assess the failure mode) (n = 8), nanoinfiltration (to assess the interface sealing) (n = 3), in situ zymography (to assess the gelatinolytic activity) (n = 3) and micro-computed microtomography (μ-CT) (to assess the mineralization) (n = 3). Data from μTBS, μ-CT and, nanoinfiltration and hybrid layer formation/degradation were submitted to two-way ANOVA and Tukey tests, and failure patterns and in situ zymography to Kruskal-Wallis and Dunn tests (α = 5%). RESULTS The highest mineral density change by μ-CT, smallest silver nitrate infiltration and proteolytic activity in the adhesive layer were obtained significantly for the groups SD, CAD/ACP and CAD/P11-4, with most mixed fractures at 18-month (p < 0.001). CAD/NaF showed significantly similar values to CAD, CAD and CAD/NaF which presented a high percentage of adhesive fracture (p < 0.001) at all time periods. SIGNIFICANCE Treating caries-affected dentin with remineralizing agents CPP-ACP and Curodont™ Repair, has the potential to be a clinically relevant treatment protocol to increase the longevity of adhesive restorations.
Collapse
Affiliation(s)
- Kelly Maria Moreira
- Department of Science Health and Pediatric Dentistry, Division of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - Luiz Eduardo Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97201, USA.
| | - Robert Phill Davies
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds S9 7TF, UK.
| | - Felipe Joia
- Department of Oral Diagnosis, Piracicaba Dental School University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - José Francisco Höfling
- Department of Oral Diagnosis, Piracicaba Dental School University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - Fabio Duprat Nascimento
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes, Mogi das Cruzes 08780-911, SP, Brazil.
| | - Regina Maria Puppin-Rontani
- Department of Science Health and Pediatric Dentistry, Division of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| |
Collapse
|
16
|
Mahesh J, Veeresh DJ, Akhil P, Vishnuprasad S, Premkumar S, Shaswata K. Comparative Evaluation of Root Caries Remineralization Effect of Plain Milk, 5 ppm of Fluoridated Milk, and 5 ppm of Sodium Fluoride in Deionized Water Using Surface Microhardness Test: An In Vitro Study. J Pharm Bioallied Sci 2020; 12:S182-S189. [PMID: 33149453 PMCID: PMC7595464 DOI: 10.4103/jpbs.jpbs_54_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/01/2020] [Accepted: 03/06/2020] [Indexed: 11/04/2022] Open
Abstract
Background: There is an increase in longevity of teeth retained in elderly population, leading to increased risk of root caries. Therefore, new and affordable preventive strategies are in need to reduce this problem. Hence, the aim and objective of the study was to assess and compare the root caries remineralization effect of plain milk, 5ppm of fluoridated milk, and 5ppm of NaF in deionized water. Materials and Methods: The study was an in vitro experimental design. Sixty root samples were divided into five groups (sound root, demineralized root treated in deionized water, plain milk, 5-ppm fluoridated milk, and 5-ppm fluoridated deionized water) of 12 samples each after baseline surface microhardness analysis and standardization was carried out in the study. All groups except the sound root were subjected to demineralization procedure for 4 days at 37°C. The demineralized four groups were treated to test solutions and subjected to pH cycling for 14 days. This was followed with assessment of postintervention surface microhardness. Student’s paired t test was used for comparing surface within groups. One-way analysis of variance test and post hoc Tukey’s test were conducted for between groups’ comparison. Results: There was a significant difference between groups (P < 0.05). The results of post hoc showed that significant difference was found between the group sound root and demineralized treated with 5-ppm fluoridated milk and 5-ppm fluoridated deionized water with an effect size of 2.15 and 2.87, with CI (–26.8 to –8.1) and (–36 to –17.3), respectively. There was a significant difference in all the groups when compared within the group (P < 0.05). Conclusion: Plain milk, 5-ppm fluoridated milk, and 5-ppm fluoridated deionized water showed remineralizing potential against demineralized in vitro root caries samples. 5-ppm fluoridated deionized water and 5-ppm fluoridated milk have a better effect compared to plain milk.
Collapse
Affiliation(s)
- Jagadeson Mahesh
- Department of Public Health Dentistry, Karpaga Vinayaga Institute of Dental Sciences, Madhuranthagam, Tamilnadu, India
| | - Dummi J Veeresh
- Department of Public Health Dentistry, Bapuji Dental college and Hospital, Davangere, Karnataka, India
| | - Pallepati Akhil
- Department of Public Health Dentistry, Lenora Institute of dental sciences, Rajahmundry, Andhra Pradesh, India
| | - Subramanian Vishnuprasad
- Department of Public Health Dentistry, Lenora Institute of dental sciences, Rajahmundry, Andhra Pradesh, India
| | - Srinivasan Premkumar
- Department of Oral and maxillofacial pathology, JKKN Dental college and Hospital, Kumarapalayam, Tamilnadu, India
| | - Karmakar Shaswata
- Department of Periodontics and Implantology, Manipal college of Dental Sciences, Manipal, Karnataka, India
| |
Collapse
|
17
|
Kunam D, Sampath V, Manimaran S, Sekar M. Effect of Indigenously Developed Nano-Hydroxyapatite Crystals from Chicken Egg Shell on the Surface Hardness of Bleached Human Enamel: An In Vitro Study. Contemp Clin Dent 2020; 10:489-493. [PMID: 32308325 PMCID: PMC7150555 DOI: 10.4103/ccd.ccd_810_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: The objective was to evaluate the effect of nano-hydroxyapatite (nHA) derived from chicken eggshell on bleached human enamel in comparison with commercial casein phophopeptide-amorphous calcium phosphate (CPP-ACP) paste using Vickers microhardness test. Materials and Methods: nHA powder was prepared from chicken eggshell using combustion method. nHA slurry was prepared by mixing 1.8 g of nHA powder with 0.3 ml of distilled water. Forty intact maxillary anterior teeth were collected and decoronated, and the crowns were embedded in acrylic mold with the labial enamel surfaces exposed. Baseline microhardness evaluation was done (T0). The specimens were randomly divided into the following four groups (n = 10) based on the surface treatment of enamel: Group 1: no bleaching treatment; Group 2: bleaching with 30% hydrogen peroxide (HP) solution; Group 3: bleaching followed by the application of CPP-ACP; and Group 4: bleaching followed by the application of nHA. The specimens were stored in artificial saliva at 37°C for 2 weeks, after which they were subjected to Vickers microhardness test (T14). One-way ANOVA and Tukey's post hoc multiple comparison tests were used for statistical analysis (P < 0.05). Results: Bleaching with HP significantly decreased the enamel microhardness. CPP-ACP and nHA derived from chicken eggshell increased the enamel microhardness significantly. There was no significant difference in microhardness values among the CPP-ACP and nHA groups. Conclusion: Nano-hydroxyapatite sourced from chicken eggshell was as effective as CPP-ACP in remineralizing and restoring the lost microhardness of bleached enamel.
Collapse
Affiliation(s)
- Divya Kunam
- Department of Conservative Dentistry and Endodontics, Narayana Dental College and Hospital, Nellore, Andhra Pradesh, India
| | - Vidhya Sampath
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Chennai, Tamil Nadu, India
| | - Sujatha Manimaran
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Chennai, Tamil Nadu, India
| | - Mahalaxmi Sekar
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Re- and demineralization characteristics of dentin depending on fluoride application and baseline characteristics in situ. J Dent 2020; 94:103305. [DOI: 10.1016/j.jdent.2020.103305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/19/2022] Open
|
19
|
Nobre CMG, Pütz N, Hannig M. Adhesion of Hydroxyapatite Nanoparticles to Dental Materials under Oral Conditions. SCANNING 2020; 2020:6065739. [PMID: 32454927 PMCID: PMC7222588 DOI: 10.1155/2020/6065739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 05/21/2023]
Abstract
Hydroxyapatite nanoparticles (nano-HAP) are receiving considerable attention for dental applications, and their adhesion to enamel is well established. However, there are no reports concerning the effects of HAP on other dental materials, and most of the studies in this field are based on in vitro designs, neglecting the salivary pellicle-apatite interactions. Thus, this in situ pilot study aims to evaluate the effects of three hydroxyapatite-based solutions and their interactions with different dental material surfaces under oral conditions. Hence, two volunteers carried intraoral splints with mounted samples from enamel and from three dental materials: titanium, ceramics, and polymethyl-methacrylate (PMMA). Three HAP watery solutions (5%) were prepared with different shapes and sizes of nano-HAP (HAP I, HAP II, HAP III). After 3 min of pellicle formation, 10 ml rinse was performed during 30 sec. Rinsing with water served as control. Samples were accessed immediately after rinsing, 30 min and 2 h after rinsing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the particles, and SEM evaluated the pellicle-HAP interactions. SEM and TEM results showed a high variation in the size range of the particles applied. A heterogeneous HAP layer was present after 2 h on enamel, titanium, ceramics, and PMMA surfaces under oral conditions. Bridge-like structures were visible between the nano-HAP and the pellicle formed on enamel, titanium, and PMMA surfaces. In conclusion, nano-HAP can adhere not only to enamel but also to artificial dental surfaces under oral conditions. The experiment showed that the acquired pellicle act as a bridge between the nano-HAP and the materials' surface.
Collapse
Affiliation(s)
- Cíntia Mirela Guimarães Nobre
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| | - Norbert Pütz
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| |
Collapse
|
20
|
Vijayasankari V, Asokan S, GeethaPriya PR. Evaluation of remineralisation potential of experimental nano hydroxyapatite pastes using scanning electron microscope with energy dispersive X-ray analysis: an in-vitro trial. Eur Arch Paediatr Dent 2019; 20:529-536. [DOI: 10.1007/s40368-018-00411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
21
|
Emerenciano NG, Botazzo Delbem AC, Pessan JP, Nunes GP, Souza Neto FN, de Camargo ER, Danelon M. In situ effect of fluoride toothpaste supplemented with nano-sized sodium trimetaphosphate on enamel demineralization prevention and biofilm composition. Arch Oral Biol 2018; 96:223-229. [DOI: 10.1016/j.archoralbio.2018.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 11/16/2022]
|
22
|
Barbosa-Martins LF, Sousa JPD, Alves LA, Davies RPW, Puppin-Rontanti RM. Biomimetic Mineralizing Agents Recover the Micro Tensile Bond Strength of Demineralized Dentin. MATERIALS 2018; 11:ma11091733. [PMID: 30223511 PMCID: PMC6165435 DOI: 10.3390/ma11091733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022]
Abstract
Biomimetic remineralization is an approach that mimics natural biomineralization, and improves adhesive procedures. The aim of this paper was to investigate the influence of Dentin Caries-like Lesions (DCLL)-Producing Model on microtensile bond strength (μTBS) of etch and rinse adhesive systems and investigate the effect of remineralizing agents such as Sodium Fluoride (NaF), MI Paste™ (MP) and Curodont™ Repair (CR) on caries-affected dentin (n = 6). Nine groups were established: (1) Sound dentin; (2) Demineralized dentin/Chemical DCLL: (3) Demineralized dentin/Biological DCLL; (4) Chemical/DCLL + NaF; (5) Chemical/DCLL + MP; (6) Chemical/DCLL + CR; (7) Biological/DCLL + NaF; (8) Biological/DCLL + MP; (9) Biological/DCLL + CR. Then all dentin blocks were subjected to a bonding procedure with Adper™ Single Bond 2 adhesive system/Filtek Z350XT 4 mm high block, following this they were immersed in deionized water/24 h and then sectioned with ≅1 mm2 beams. The μTBS test was conducted at 1 mm/min/500 N loading. Failure sites were evaluated by SEM (scanning electron microscopy (150×). μTBS data were submitted to factorial ANOVA and Tukey’s test (p < 0.05). The highest values were found when demineralized dentin was treated with MP and CR, regardless caries lesion depth (p < 0.05). There was a predominance of adhesive/mixed in the present study. It was concluded that the use of the artificial dentin caries production models produces differences in the μTBS. Additionally MP and CR remineralizing agents could enhance adhesive procedures even at different models of caries lesion.
Collapse
Affiliation(s)
- Luiz Filipe Barbosa-Martins
- Department of Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba 13414-903; Brazil.
| | - Jossaria Pereira de Sousa
- Department of Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba 13414-903; Brazil.
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba 13414-903, Brazil.
| | - Robert Philip Wynn Davies
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds LS9 7TF, UK.
| | - Regina Maria Puppin-Rontanti
- Departments of Pediatric Dentistry and Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, Brazil.
| |
Collapse
|
23
|
Gavic L, Gorseta K, Borzabadi-Farahani A, Tadin A, Glavina D. Influence of Toothpaste pH on Its Capacity to Prevent Enamel Demineralization. Contemp Clin Dent 2018; 9:554-559. [PMID: 31772462 PMCID: PMC6868611 DOI: 10.4103/ccd.ccd_667_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim: This study evaluated in vitro the remineralization capacity of commercial toothpastes with different fluoride (F) concentrations and their effectiveness when they are acidified. Materials and Methods: One hundred and twelve caries-free teeth were used to prepare enamel specimens, and the specimens were divided into 16 groups (n = 7). Baseline surface Vickers microhardness was measured for all the specimens and all the tested groups were subjected to the pH-cycling regime involved five demineralization challenges each day for 10 days, and surface Vickers microhardness was then measured. Once daily, specimens were exposed for 30 min after last demineralization challenge of the day to the slurry of each toothpaste containing 1450 ppm F, 1000 ppm F, 450 ppm F, and 0 ppm F. The slurry was in original pH or acidulated on 6.5, 6.0, or 5.5 pH. The difference among tested group was assessed by analysis of variance and Newman–Keuls test (P < 0.05). Results: The highest increase in microhardness was detected after treatment with toothpaste containing 1450 ppm fluoride (percentage of increase in microhardness was 6.20%), and the biggest loss was detected after treatment with toothpaste containing no fluoride (percentage of decrease was 6.82%), but there was no significant difference between tested groups. Conclusions: The highest increase in microhardness was detected after treatment with toothpaste containing more fluorides (1450 ppm F) regardless of the acidity.
Collapse
Affiliation(s)
- Lidia Gavic
- Study of Dental Medicine, School of Medicine, University of Split, Split, Croatia
| | - Kristina Gorseta
- Department of Pediatric Dentistry, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Ali Borzabadi-Farahani
- Department of Clinical Sciences and Translational Medicine, University of Rome'Tor Vergata', Rome, Italy; Specialist Orthodontic Practice, London, England, UK
| | - Antonija Tadin
- Study of Dental Medicine, School of Medicine, University of Split, Split, Croatia
| | - Domagoj Glavina
- Department of Pediatric Dentistry, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
24
|
Nozari A, Ajami S, Rafiei A, Niazi E. Impact of Nano Hydroxyapatite, Nano Silver Fluoride and Sodium Fluoride Varnish on Primary Teeth Enamel Remineralization: An In Vitro Study. J Clin Diagn Res 2017; 11:ZC97-ZC100. [PMID: 29207844 DOI: 10.7860/jcdr/2017/30108.10694] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/07/2017] [Indexed: 01/12/2023]
Abstract
Introduction Dental caries is still prevailing worldwide, although different anti caries products have been introduced. Each remineralizing agent has its own shortcomings. Therefore, looking for new agents to have benefits of previous ones with lesser side effects is worthwhile. Aim To determine the remineralization ability of NaF varnish, nano-Hydroxyapatite Serum (n-HAP) and Nano Silver Fluoride (NSF) on enamel of primary anterior teeth. Materials and Methods Incipient caries were induced in primary sound anterior teeth by storing each specimen in demineralization solution for 72 hours. Then they were randomly divided into four groups of 15 samples each: (1) NaF varnish; (2) n-HAP repairing serum; (3) NSF and (4) no treatment (control). Surface Microhardness (SMH) was assessed with Vickers micro hardness tester before and after demineralization and after 10 days of pH-cycling. A total of 12 random specimens from groups 1 to 4 (3 random samples of each group) were examined by Atomic Force Microscopy (AFM). The SMH values were analysed with one-way and repeated measures ANOVA. Level of significance was set at p=0.05. Results Post lesion SMH values significantly decreased in all groups (p<0.001). Post treatment SMH values significantly increased in comparison to post lesion ones (p<0.001) except for control group which was not different statistically (p=0.86). The highest SMH values were observed in NSF group (mean 222.90 ± 28.79). Statistically significant differences were shown between all groups (p<0.05). However, NaF varnish and n-HAP groups were not statistically different (p=0.165). AFM images demonstrated protective layers in all treated groups. Conclusion The results of this in vitro study suggest that NSF could have the greatest remineralization efficacy. NaF varnish and n-HAP serum were similar in remineralizing initial caries. Future clinical studies are recommended for selection of the most appropriate remineralizing agent in primary teeth.
Collapse
Affiliation(s)
- Ali Nozari
- Assistant Professor, Department of Paediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Shabnam Ajami
- Assistant Professor, Department of Orthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Azade Rafiei
- Assistant Professor, Oral and Dental Disease Research Center, Department of Paediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elmira Niazi
- Postgraduate Student, Oral and Dental Disease Research Center, Department of Paediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Effect of fluoride toothpaste with nano-sized trimetaphosphate on enamel demineralization: An in vitro study. Arch Oral Biol 2017; 78:82-87. [DOI: 10.1016/j.archoralbio.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
|
26
|
Bandeca MC, Kuga MC, Lima SL, Escalante-Otárola W, Castro-Núñez G, Jordão-Basso KCF. Treatment Protocol for Dentin Hypersensitivity. ACTA ACUST UNITED AC 2017. [DOI: 10.5005/jp-journals-10015-1401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ABSTRACT
How to cite this article
Escalante-Otárola W, Castro-Núñez G, Jordão-Basso KCF, Lima SL, Kuga MC, Bandeca MC. Treatment Protocol for Dentin Hypersensitivity. World J Dent 2017;8(1):1-4.
Collapse
|
27
|
Ajami S, Pakshir HR, Babanouri N. Impact of nanohydroxyapatite on enamel surface roughness and color change after orthodontic debonding. Prog Orthod 2016; 17:11. [PMID: 27004806 PMCID: PMC4826863 DOI: 10.1186/s40510-016-0124-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/01/2016] [Indexed: 11/22/2022] Open
Abstract
Background The aim of this prospective in vitro study was to evaluate the effect of nanohydroxyapatite (nanoHAP) serum on the enamel surface roughness and tooth color stability after orthodontic debonding procedure. Methods The crowns of 30 premolars were embedded in acrylic blocks with a 4 mm × 5-mm-sized window on the middle third of buccal surfaces. Primary roughness values were evaluated by an atomic force microscope (AFM). After bracket debonding, and polishing procedures, the second roughness parameters were recorded. Specimens were then randomly assigned to two equal groups. NanoHAP serum and HAP toothpaste were applied for 10 days in the first and second groups, respectively. Then, after the third AFM, initial color parameters were measured. Following 1-week immersion in the coffee solution, second color assessment was performed. The fourth AFM was registered after 2 months of aging process. Results All roughness parameters were elevated following debonding procedure. There was no statistically significant reduction in roughness parameters after 10 days of nanoHAP serum or HAP toothpaste application. Both groups showed significant color change after immersion in the coffee solution. Conclusions NanoHAP serum with the protocols used in this study could not restore enamel surfaces to their original condition.
Collapse
Affiliation(s)
- Shabnam Ajami
- Orthodontic Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hamid Reza Pakshir
- Orthodontic Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Neda Babanouri
- Orthodontic Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
28
|
Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro. Clin Oral Investig 2016; 21:291-300. [PMID: 26993660 DOI: 10.1007/s00784-016-1789-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The aim of the study was to investigate the caries-preventive effect of newly developed fluoride and fluoride-free toothpastes specially designed for erosion prevention. The hypothesis was that these products might also show superior caries-inhibiting effect than regular fluoride toothpastes, since they were designed for stronger erosive acid challenges. MATERIALS AND METHODS Enamel specimens were obtained from bovine teeth and pre-demineralized (pH = 4.95/21 days) to create artificial caries lesions. Baseline mineral loss (ΔZB) and lesion depth (LDB) were determined using transversal microradiography (TMR). Ninety specimens with a median ΔZB (SD) of 6027 ± 1546 vol% × μm were selected and randomly allocated to five groups (n = 18). Treatments during pH-cycling (14 days, 4 × 60 min demineralization/day) were brushing 2×/day with AmF (1400 ppm F-, anti-caries [AC]); AmF/NaF/SnCl2/Chitosan (700 ppm F-/700 ppm F-/3500 ppm Sn2+, anti-erosion [AE1]); NaF/KNO3 (1400 ppm F-, anti-erosion [AE2]); nano-hydroxyapatite-containing (0 ppm F-, [nHA]); and fluoride-free toothpastes (0 ppm F-, negative control [NC]). Toothpaste slurries were prepared with mineral salt solution (1:3 wt/wt). After pH-cycling specimens presenting lesion, surface loss (mainly by NC and nHA) were discarded. For the remaining 77 specimens, new TMR analyses (ΔZE/LDE) were performed. Changes in mineral loss (ΔΔZ = ΔZB - ΔZE) and lesion depth (ΔLD = LDB - LDE) were calculated. RESULTS All toothpastes caused significantly less demineralization (lower ΔΔZ) than NC (p < 0.05, ANOVA) except for nHA. The fluoride toothpastes did not differ significantly regarding ΔΔZ and ΔLD (p > 0.05, ANOVA). CONCLUSION/CLINICAL RELEVANCE While both anti-erosive and anti-caries toothpastes reduced mineral loss to a similar extent, the fluoride-free nano-hydroxyapatite-containing toothpaste seemed not to be suitable for inhibition of caries demineralization in vitro.
Collapse
|
29
|
Danelon M, Pessan JP, Neto FNS, de Camargo ER, Delbem ACB. Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study. J Dent 2015; 43:806-13. [PMID: 25936338 DOI: 10.1016/j.jdent.2015.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES This in situ study was to evaluate the remineralizing effect of a fluoride toothpaste supplemented with nano-sized sodium trimetaphosphate (TMP). METHODS This blind and cross-over study was performed in 4 phases of 3 days each. Twelve subjects used palatal appliances containing four bovine enamel blocks with artificial caries lesions. Volunteers were randomly assigned into the following treatment groups: Placebo (without F and TMP); 1100 ppm F (1100), 1100 supplemented with 3% micrometric TMP (1100 TMP) and with nano-sized TMP (1100 TMPnano). Volunteers were instructed to brush their natural teeth with the palatal appliances in the mouth during 1min (3 times/day), so that blocks were treated with natural slurries of toothpastes. After each phase, the percentage of surface hardness recovery (%SHR), integrated mineral recovery (IMR) and integrated differential mineral area profile (ΔIMR) in enamel lesions were calculated. F in enamel was also determined. Data were analyzed by ANOVA and Student-Newman-Keuls test. RESULTS Enamel surface became 20% harder when treated with 1100 TMPnano in comparison with 1100 (p<0.001). 1100 TMPnano showed remineralizing capacity (IMR; ΔIMR) 66% higher when compared with 1100 TMP (p<0.001). Enamel F uptake in the 1100 TMPnano group was 2-fold higher when compared to its counterpart without TMP (p<0.001). CONCLUSION The addition of 3% TMPnano to a conventional toothpaste was able to promote an additional remineralizing effect of artificial caries lesions. CLINICAL SIGNIFICANCE Toothpaste containing 1100 ppm F associated with TMPnano showed a potential of higher remineralization to 1100 ppm F and 1100 ppm F micrometric TMP.
Collapse
Affiliation(s)
- Marcelle Danelon
- Araçatuba Dental School, Univ. Estadual Paulista (UNESP), Department of Pediatric Dentistry and Public Health, Rua José Bonifácio 1193, Araçatuba, SP CEP 16015-050, Brazil
| | - Juliano Pelim Pessan
- Araçatuba Dental School, Univ. Estadual Paulista (UNESP), Department of Pediatric Dentistry and Public Health, Rua José Bonifácio 1193, Araçatuba, SP CEP 16015-050, Brazil
| | - Francisco Nunes Souza Neto
- LIEC-Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos/São Paulo, Brazil
| | | | - Alberto Carlos Botazzo Delbem
- Araçatuba Dental School, Univ. Estadual Paulista (UNESP), Department of Pediatric Dentistry and Public Health, Rua José Bonifácio 1193, Araçatuba, SP CEP 16015-050, Brazil.
| |
Collapse
|