1
|
Żukowska W, Kosmela P, Wojtasz P, Szczepański M, Piasecki A, Barczewski R, Barczewski M, Hejna A. Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams' Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165728. [PMID: 36013863 PMCID: PMC9412428 DOI: 10.3390/ma15165728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 05/11/2023]
Abstract
Material innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated into a flexible foamed PU matrix as a cost-effective waste-based filler. A two-step prepolymer method of foams manufacturing was applied to maximize the potential of applied formulation changes. The impact of the GTR content on the foams' processing, chemical, and cellular structure, as well as static and dynamic mechanical properties, thermal stability, sound suppression ability, and thermal insulation performance, was investigated. The introduction of GTR caused a beneficial reduction in the average cell diameter, from 263.1 µm to 144.8-188.5 µm, implicating a 1.0-4.3% decrease in the thermal conductivity coefficient. Moreover, due to the excellent mechanical performance of the car tires-the primary application of GTR-the tensile performance of the foams was enhanced despite the disruption of the cellular structure resulting from the competitiveness between the hydroxyl groups of the applied polyols and on the surface of the GTR particles. The tensile strength and elongation at break were increased by 10 and 8% for 20 parts by weight GTR addition. Generally, the presented work indicates that GTR can be efficiently applied as a filler for flexible PU foams, which could simultaneously enhance their performance, reduce costs, and limit environmental impacts due to the application of waste-based material.
Collapse
Affiliation(s)
- Wiktoria Żukowska
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Paulina Kosmela
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Paweł Wojtasz
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mariusz Szczepański
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznan, Poland
| | - Roman Barczewski
- Institute of Applied Mechanics, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznan, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Correspondence:
| |
Collapse
|
2
|
Guerra NB, Sant'Ana Pegorin G, Boratto MH, de Barros NR, de Oliveira Graeff CF, Herculano RD. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112126. [PMID: 34082943 DOI: 10.1016/j.msec.2021.112126] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
The past decades have witnessed tremendous progress in biomaterials in terms of functionalities and applications. To realize various functions such as tissue engineering, tissue repair, and controlled release of therapeutics, a biocompatible and biologically active material is often needed. However, it is a difficult task to find either synthetic or natural materials suitable for in vivo applications. Nature has provided us with the natural rubber latex from the rubber tree Hevea brasiliensis, a natural polymer that is biocompatible and has been proved as inducing tissue repair by enhancing the vasculogenesis process, guiding and recruiting cells responsible for osteogenesis, and acting as a solid matrix for controlled drug release. It would be extremely useful if medical devices can be fabricated with materials that have these biological properties. Recently, various types of natural rubber latex-based biomedical devices have been developed to enhance tissue repair by taking advantage of its biological properties. Most of them were used to enhance tissue repair in chronic wounds and critical bone defects. Others were used to design drug release systems to locally release therapeutics in a sustained and controlled manner. Here, we summarize recent progress made in these areas. Specifically, we compare various applications and their performance metrics. We also discuss critical problems with the use of natural rubber latex in biomedical applications and highlight future opportunities for biomedical devices produced either with pre-treated natural rubber latex or with proteins purified from the natural rubber latex.
Collapse
Affiliation(s)
- Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, BR
| | - Giovana Sant'Ana Pegorin
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Miguel Henrique Boratto
- Department of Physics, São Paulo State University (UNESP), School of Sciences, Bauru, São Paulo, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11570 West Olympic Boulevard, Los Angeles, CA 90064, USA.
| | | | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| |
Collapse
|
3
|
de Morais JPP, Pacheco IKC, Filho ALMM, Ferreira DCL, Viana FJC, da Silva Reis F, de Matos JME, Dos Santos Rizzo M, Fialho ACV. Polyurethane derived from castor oil monoacylglyceride (Ricinus communis) for bone defects reconstruction: characterization and in vivo testing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:39. [PMID: 33792773 PMCID: PMC8016756 DOI: 10.1007/s10856-021-06511-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Biomaterials used in tissue regeneration processes represent a promising option for the versatility of its physical and chemical characteristics, allowing for assisting or speeding up the repair process stages. This research has characterized a polyurethane produced from castor oil monoacylglyceride (Ricinus communis L) and tested its effect on reconstructing bone defects in rat calvaria, comparing it with commercial castor oil polyurethane. The characterizations of the synthesized polyurethane have been performed by spectroscopy in the infrared region with Fourier transform (FTIR); thermogravimetric analysis (TG/DTG); X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). For the in vivo test, 24 animals have been used, divided into 3 groups: untreated group (UG); control group treated with Poliquil® castor polyurethane (PCP) and another group treated with castor polyurethane from the Federal University of Piauí - UFPI (CPU). Sixteen weeks after surgery, samples of the defects were collected for histological and histomorphometric analysis. FTIR analysis has shown the formation of monoacylglyceride and polyurethane. TG and DTG have indicated thermal stability of around 125 °C. XRD has determined the semi-crystallinity of the material. The polyurethane SEM has shown a smooth morphology with areas of recesses. Histological and histomorphometric analyzes have indicated that neither CPU nor PCP induced a significant inflammatory process, and CPU has shown, statistically, better performance in bone formation. The data obtained shows that CPU can be used in the future for bone reconstruction in the medical field.
Collapse
Affiliation(s)
- João Pedro Pereira de Morais
- Graduated Program in Health Sciences, Health Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil
| | | | | | | | - Felipe José Costa Viana
- Graduated Program in Health Sciences, Health Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil
| | - Fernando da Silva Reis
- Department of Chemistry, Nature Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil
| | - José Milton Elias de Matos
- Department of Chemistry, Nature Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil.
| | - Marcia Dos Santos Rizzo
- Department of Morphology, Health Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil
| | - Ana Cristina Vasconcelos Fialho
- Department of Pathology and Dental Clinic, Health Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil.
| |
Collapse
|
4
|
Chakraborty I, Chatterjee K. Polymers and Composites Derived from Castor Oil as Sustainable Materials and Degradable Biomaterials: Current Status and Emerging Trends. Biomacromolecules 2020; 21:4639-4662. [PMID: 33222440 DOI: 10.1021/acs.biomac.0c01291] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent years have seen rapid growth in utilizing vegetable oils to derive a wide variety of polymers to replace petroleum-based polymers for minimizing environmental impact. Nonedible castor oil (CO) can be extracted from castor plants that grow easily, even in an arid land. CO is a promising source for developing several polymers such as polyurethanes, polyesters, polyamides, and epoxy-polymers. Several synthesis routes have been developed, and distinct properties of polymers have been studied for industrial applications. Furthermore, fillers and fibers, including nanomaterials, have been incorporated in these polymers for enhancing their physical, thermal, and mechanical properties. This review highlights the development of CO-based polymers and their composites with attractive properties for industrial and biomedical applications. Recent advancements in CO-based polymers and their composites are presented along with a discussion on future opportunities for further developments in diverse applications.
Collapse
Affiliation(s)
- Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
5
|
Osseointegrated membranes based on electro-spun TiO 2/hydroxyapatite/polyurethane for oral maxillofacial surgery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110479. [PMID: 31923963 DOI: 10.1016/j.msec.2019.110479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Membranes which have an osseointegration abilty are often selected as biomaterials in oral and maxillofacial surgery. Although these membranes are often the best option for certain uses, it is a challenge to create functionally attractive membranes. In this research, electro-spun titanium oxide (TiO2)/hydroxyapatite (HA)/polyurethane (PU) membranes were fabricated with different ratios of HA and TiO2: 100: 0, 70:30, 50:50, 30:70 and 0:100 w/w. The morphologies of the different mixtures were assessed with a Scanning Electron Microscope (SEM) and Field Emission Microscope (FESEM). Element analysis was performed with EDX. The physical properties of the water contact angles and mechanical strength were tested and the membranes cultured with osteoblasts to evaluate their biological functions, cell adhesion, viability, proliferation, alkaline phosphatase (ALP) activity, and calcium content. The results showed that the membranes with TiO2 and HA had smaller fibers than those without TiO2 and HA. The TiO2- and HA-including compounds showed the formation of particle aggregation on the surface of the fibers. They also had higher water contact angles, mechanical strength, and stiffness than those without TiO2 and HA, and they had better cell adhesion, viability, proliferation, ALP activity and calcium content. The membrane with a 50:50 TiO2:HA ratio had more unique biological functions than the others. Finally, our research demonstrated that osseointegrated membranes with 50:50 TiO2:HA are promising for oral and maxillofacial surgery.
Collapse
|
6
|
Costa RRCD, Almeida FRBD, Silva AAXD, Domiciano SM, Vieira AFC. Design of a polymeric composite material femoral stem for hip joint implant. POLIMEROS 2019. [DOI: 10.1590/0104-1428.02119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|