1
|
Arruebo-Rivera PL, Castillo-Alfonso F, Troya A, Cárdenas-Moreno Y, Pérez-Ramos P, González-Bacerio J, Seijas JMG, Del Monte-Martínez A. Modeling and Experimental Validation of Algorithms for Maximum Quantity of Protein to be Immobilized on Solid Supports by Electrostatic Adsorption in the Strategy of Rational Design of Immobilized Derivatives. Protein J 2021; 40:576-588. [PMID: 33973097 DOI: 10.1007/s10930-021-09992-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
Protein immobilization by electrostatic adsorption to a support could represent a good option. On the other hand, lysozyme (EC 3.2.1.17) is a little and basic protein. The objective of this work was to test the functionality of the strategy of Rational Design of Immobilized Derivatives for the immobilization by electrostatic adsorption of egg white lysozyme on SP-Sepharose FastFlow support. The RDID1.0 software was used to predict the superficial lysozyme clusters, the electrostatic configuration probability for each cluster, and the theoretical and estimated maximum quantity of protein to be immobilized. In addition, immobilization was performed and the experimental parameter practical maximum quantity of protein to be immobilized and the enzymatic activity of the immobilized derivative were assessed. The estimated maximum quantity of protein to be immobilized (9.49 protein mg/support g) was close to the experimental practical maximum quantity of protein to be immobilized (14.73 ± 0.09 protein mg/support g). The enzymatic activity assay with the chitosan substrate showed the catalytic functionality of the lysozyme-SP-Sepharose immobilized derivative (35.85 ± 3.07 U/support g), which preserved 78% functional activity. The used algorithm to calculate the estimated maximum quantity of protein to be immobilized works for other proteins, porous solid supports and immobilization methods, and this parameter has a high predictive value, useful for obtaining optimum immobilized derivatives. The applied methodology is valid to predict the most probable protein-support configurations and their catalytic competences, which concur with the experimental results. The produced biocatalyst had a high retention of functional activity. This indicates its functionality in enzymatic bioconversion processes.
Collapse
Affiliation(s)
- Pedro L Arruebo-Rivera
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/ J e I, Vedado, 10400, Havana, Cuba
| | - Freddy Castillo-Alfonso
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/ J e I, Vedado, 10400, Havana, Cuba.,Posgrado en Ciencias Naturales E Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, 05348, Mexico City, Mexico
| | - Amanda Troya
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/ J e I, Vedado, 10400, Havana, Cuba.,Instituto de Farmacia y Alimentos, Universidad de La Habana, San Lázaro y L, Vedado, 10400, Havana, Cuba
| | - Yosberto Cárdenas-Moreno
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/ J e I, Vedado, 10400, Havana, Cuba.,Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/ J e I, Vedado, 10400, Havana, Cuba
| | - Patricia Pérez-Ramos
- Instituto de Farmacia y Alimentos, Universidad de La Habana, San Lázaro y L, Vedado, 10400, Havana, Cuba
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/ J e I, Vedado, 10400, Havana, Cuba.
| | - José M Guisán Seijas
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Alberto Del Monte-Martínez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/ J e I, Vedado, 10400, Havana, Cuba.
| |
Collapse
|
2
|
Activity of chitosan-lysozyme nanoparticles on the growth, membrane integrity, and β-1,3-glucanase production by Aspergillus parasiticus. 3 Biotech 2017; 7:279. [PMID: 28794934 DOI: 10.1007/s13205-017-0913-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022] Open
Abstract
Synthesis of nanocomposites from antimicrobial biopolymers such as chitosan (CS) and lysozyme (LZ) is an important and promising area in bionanotechnology. Chitosan-lysozyme (CS-LZ) nanoparticles (NPs) were prepared by the nanoprecipitation method, using commercial chitosan of 153 kDa. TEM and dynamic light scattering (DLS) analysis were carried out to evaluate the morphology, size, dispersion, and Z potential. Association efficiency of lysozyme was determined using Coomassie blue assay. The antifungal activity of NPs against Aspergillus parasiticus was evaluated through cell viability (XTT), germination and morphometry of spores, and reducing sugars production; the effects on membrane integrity and cell wall were also analyzed. NPs' size were found in the range of 13.4 and 11.8 nm for CS-LZ and CS NPs, respectively, and high Z potential value was observed in both NPs. Also, high association of lysozyme was presented in the CS matrix. With respect to the biological responses, CS-LZ NPs reduced the viability of A. parasiticus and a strong inhibitory effect on the germination of spores (100% of inhibition) was observed at 24 h in in vitro assays. CS-LZ and CS NPs affected the membrane integrity and the cell wall of spores of fungi with respect to control, which is consistent with the low amount of reducing sugars detected. CS-LZ NPs prepared by nanoprecipitation promise to be a viable and safe alternative for use in biological systems, with a possible low or null impact to humans and biota. However, the potential benefits and the environmental and health implications of NPs need to be globally discussed due to its possible negative effects.
Collapse
|
3
|
Polysaccharide-Based Edible Coatings Containing Cellulase for Improved Preservation of Meat Quality during Storage. Molecules 2017; 22:molecules22030390. [PMID: 28257118 PMCID: PMC6155409 DOI: 10.3390/molecules22030390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
The objectives of this study were to optimize the composition of edible food coatings and to extend the shelf-life of pork meat. Initially, nine meat samples were coated with solutions containing chitosan and hydroxypropyl methylcellulose at various cellulase concentrations: 0%, 0.05%, and 0.1%, stored for 0, 7, and 14 days. Uncoated meat served as the controls. The samples were tested for pH, water activity (aw), total number of microorganisms (TNM), psychrotrophs (P), number of yeast and molds (NYM), colour, and thiobarbituric acid-reactive substances (TBARS). The pH and aw values varied from 5.42 to 5.54 and 0.919 to 0.926, respectively. The reductions in the TNM, P, and NYM after 14 days of storage were approximately 2.71 log cycles, 1.46 log cycles, and 0.78 log cycles, respectively. The enzyme addition improved the stability of the red colour. Significant reduction in TBARS was noted with the inclusion of cellulase in the coating material. Overall, this study provides a promising alternative method for the preservation of pork meat in industry.
Collapse
|
4
|
Antimicrobial and Antioxidant Activity of Chitosan/Hydroxypropyl Methylcellulose Film-Forming Hydrosols Hydrolyzed by Cellulase. Int J Mol Sci 2016; 17:ijms17091436. [PMID: 27608008 PMCID: PMC5037715 DOI: 10.3390/ijms17091436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the impact of cellulase (C) on the biological activity of chitosan/hydroxypropyl methylcellulose (CH/HPMC) film-forming hydrosols. The hydrolytic activity of cellulase in two concentrations (0.05% and 0.1%) was verified by determination of the progress of polysaccharide hydrolysis, based on viscosity measurement and reducing sugar-ends assay. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging effect, the ferric reducing antioxidant power (FRAP), and microbial reduction of Pseudomonas fluorescens, Yersinia enterocolitica, Bacillus cereus, and Staphylococcus aureus were studied. During the first 3 h of reaction, relative reducing sugar concentration increased progressively, and viscosity decreased rapidly. With increasing amount of enzyme from 0.05% to 0.1%, the reducing sugar concentration increased, and the viscosity decreased significantly. The scavenging effect of film-forming solutions was improved from 7.6% at time 0 and without enzyme to 52.1% for 0.1% cellulase after 20 h of reaction. A significant effect of cellulase addition and reaction time on antioxidant power of the tested film-forming solutions was also reported. Film-forming hydrosols with cellulase exhibited a bacteriostatic effect on all tested bacteria, causing a total reduction.
Collapse
|
5
|
Study of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges Formation Process. Polymers (Basel) 2016; 8:polym8010008. [PMID: 30979105 PMCID: PMC6432604 DOI: 10.3390/polym8010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/16/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to produce 3D sponges based on enzymatically modified lysozyme selected polysaccharides and assess their physicochemical properties. The alginate/chitosan sponges were formed from polymers hydrosols in different proportions at a final concentration of 1% polysaccharides. Hydrosols were modified by lysozyme addition of 1000 U. Hydrosols without or with enzyme were analyzed for their reducing sugar content, rheological properties and ability to scavenge free radicals. Sponges formed from hydrosols were tested for solubility and compressive properties. Only chitosan was hydrolyzed by lysozyme. The morphology of sponges was investigated by scanning electron microscopy (SEM). It was proven that the antioxidant properties of hydrosols are dependent on the concentration of chitosan. It was also shown that the addition of lysozyme negatively affected the free radical scavenging ability of single hydrosols of alginate and chitosan, and their mixtures. The Ostwald de Waele as well as Herschel⁻Bulkley models of rheological properties fitted the experimental data well (R² is between 0.947 and 1.000). Increase in textural features values of sponges was observed. Sponges with pure alginate and pure chitosan were almost completely soluble. The enzyme addition significantly changed the characteristics of the cross-section structure of sponges, and made the surface smoother.
Collapse
|
6
|
Abstract
This work characterizes biological, physical, and chemical properties of films formed from an aqueous solution of hydroxypropyl methylcellulose (HPMC), with different concentrations of chitosan (CH) and bioactive cystatin/lysozyme preparation (C/L). The properties of biocomposites were examined by Dynamic Mechanical Analysis (DMA), Fourier’s transfer infrared spectroscopy (FTIR), water vapour permeability (WVP), and tensile testing. Antimicrobial activity againstMicrococcus flavus,Bacillus cereus,Escherichia coli,Pseudomonas fluorescens, andCandida famatawas conducted. Films glass transition and storage modulus were dependent on the C/L and CH concentration. Modulus values decreased during the temperature scan and with higher reagents levels. An increase of CH and C/L concentrations in the films resulted in a decrease in tensile strength from 2.62 to 1.08 MPa. It suggests the hydrolyzing influence of C/L, also observed in smaller peak size ofαrelaxation. C/L addition caused shiftingTgto higher temperature. DMA and FTIR analysis proved that HPMC and CH are compatible polymers. Water resistance was improved with rising CH concentration from1.08E-09to7.71E−10 g/m∗s∗Pa. The highest inhibition zone inM. flavusandC. famatawas recorded at the highest concentration of CH and C/L.
Collapse
|
7
|
Modification Effect of Cellulase on the Physicochemical Characteristic of Polysaccharides Edible Films. INT J POLYM SCI 2015. [DOI: 10.1155/2015/184616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to assess hydrolytic influence of cellulase (C) on the physicochemical stability of chitosan (CH)/hydroxypropyl methylcellulose (HPMC) films in time of storage (T). Initially, nine films were physically characterized by contact angle, water vapour permeability (WVP), water activity(aw), tensile test, dynamic mechanical thermal analysis (DMTA), and thermogravimetric analysis (TGA) and chemically by Fourier Transform Infrared Spectrometry (FTIR). The contact angle results varied from 53.67° to 78.33°. The presence of the enzyme and passing time reduced the WVP from8.46E-09to7.41E-09 g/s·m·Pa. The enzyme treatment improved elasticity but decreased tensile strength of films. After adding cellulaseTgwas shifted to a higher temperature. Thermal stability of the films decreased with addition of cellulase and after prolonging storage time. FTIR analysis proved that chemical changes in polysaccharides structure were caused by cellulase incorporation in films composition, which may be observed in appearance of 1656 cm−1band. Theawvalues did not change.
Collapse
|
8
|
Physicochemical Properties of Edible Chitosan/Hydroxypropyl Methylcellulose/Lysozyme Films Incorporated with Acidic Electrolyzed Water. INT J POLYM SCI 2015. [DOI: 10.1155/2015/604759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The treatment with acidic electrolyzed water (AEW) is a promising disinfection method due to its effectiveness in reducing microbial population. The aim of the study was to evaluate physicochemical properties of chitosan/HPMC films incorporated with lysozyme and acidic electrolyzed water. In the composite films, decreasing film solubility and increasing concentration of sodium chloride solution and prolongation of electrolysis time were observed. Electrolysis process with sodium chloride induces spongy network of film structure. The use of AEW has not changed chemical composition of films which was proved by1H NMR, MALDI-TOF, and FT-IR spectroscopy. The research confirmed that electrolysis significantly improved thermomechanical properties of the examined films. The contact angle values of the films were quite similar and ranged between 56° and 73°. The increase of salt concentration used in the electrolysis process had an impact on increasing flexibility of samples. Application of electrolyzed water in commonly used food processing systems is possible. Fusion of AEW and biopolymers may provide better integration with coated food product and multidirectional protecting effect.
Collapse
|