1
|
Freitas AN, Remonatto D, Miotti Junior RH, do Nascimento JFC, da Silva Moura AC, de Carvalho Santos Ebinuma V, de Paula AV. Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach. Bioprocess Biosyst Eng 2024; 47:1735-1749. [PMID: 39102121 DOI: 10.1007/s00449-024-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.
Collapse
Affiliation(s)
- Amanda Noli Freitas
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Daniela Remonatto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Rodney Helder Miotti Junior
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - João Francisco Cabral do Nascimento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Adriana Candido da Silva Moura
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Valéria de Carvalho Santos Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Ariela Veloso de Paula
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
2
|
D'Almeida AP, de Albuquerque TL, Rocha MVP. Recent advances in Emulsan production, purification, and application: Exploring bioemulsifiers unique potentials. Int J Biol Macromol 2024; 278:133672. [PMID: 38971276 DOI: 10.1016/j.ijbiomac.2024.133672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Bioemulsifiers are compounds produced by microorganisms that reduce the interfacial forces between hydrophobic substances and water. Due to their potential in the pharmaceutical and food industries and their efficiency in oil spill remediation, they have been the subject of study in the scientific community while being safe, biodegradable, and sustainable compared to synthetic options. These biomolecules have high molecular weight and polymeric structures, distinguishing them from traditional biosurfactants. Emulsan, a bioemulsifier exopolysaccharide, is produced by Acinetobacter strains and is highly efficient in forming stable emulsions. Its low toxicity and high potential as an emulsifying agent promote its application in pharmaceutical and food industries as a drug-delivery vehicle and emulsion stabilizer. Due to the high environmental impact of oil spills, bioemulsifiers have great potential for environmental applications, such as bioremediation. This unique feature gives them a distinct mechanism of action in forming emulsions, resulting in minimal environmental impact. A better understanding of these aspects can improve the use of bioemulsifiers and environmental remediation in various industries. This review will discuss the production and characterization of Emulsan, focusing on recent advancements in cultivation conditions, purification techniques, compound identification, and ecotoxicity.
Collapse
|
3
|
Kadam V, Dhanorkar M, Patil S, Singh P. Advances in the co-production of biosurfactant and other biomolecules: statistical approaches for process optimization. J Appl Microbiol 2024; 135:lxae025. [PMID: 38308506 DOI: 10.1093/jambio/lxae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
An efficient microbial conversion for simultaneous synthesis of multiple high-value compounds, such as biosurfactants and enzymes, is one of the most promising aspects for an economical bioprocess leading to a marked reduction in production cost. Although biosurfactant and enzyme production separately have been much explored, there are limited reports on the predictions and optimization studies on simultaneous production of biosurfactants and other industrially important enzymes, including lipase, protease, and amylase. Enzymes are suited for an integrated production process with biosurfactants as multiple common industrial processes and applications are catalysed by these molecules. However, the complexity in microbial metabolism complicates the production process. This study details the work done on biosurfactant and enzyme co-production and explores the application and scope of various statistical tools and methodologies in this area of research. The use of advanced computational tools is yet to be explored for the optimization of downstream strategies in the co-production process. Given the complexity of the co-production process and with various new methodologies based on artificial intelligence (AI) being invented, the scope of AI in shaping the biosurfactant-enzyme co-production process is immense and would lead to not only efficient and rapid optimization, but economical extraction of multiple biomolecules as well.
Collapse
Affiliation(s)
- Vaibhav Kadam
- Symbiosis Centre for Waste Resource Management, Symbiosis International (Deemed University), Lavale, Pune-412115, India
| | - Manikprabhu Dhanorkar
- Symbiosis Centre for Waste Resource Management, Symbiosis International (Deemed University), Lavale, Pune-412115, India
| | - Shruti Patil
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune-412115, India
| | - Pooja Singh
- Symbiosis Centre for Waste Resource Management, Symbiosis International (Deemed University), Lavale, Pune-412115, India
| |
Collapse
|
4
|
Al-hazmi MA, Moussa TAA, Alhazmi NM. Statistical Optimization of Biosurfactant Production from Aspergillus niger SA1 Fermentation Process and Mathematical Modeling. J Microbiol Biotechnol 2023; 33:1238-1249. [PMID: 37449330 PMCID: PMC10580895 DOI: 10.4014/jmb.2303.03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023]
Abstract
In this study, we sought to investigate the production and optimization of biosurfactants by soil fungi isolated from petroleum oil-contaminated soil in Saudi Arabia. Forty-four fungal isolates were isolated from ten petroleum oil-contaminated soil samples. All isolates were identified using the internal transcribed spacer (ITS) region, and biosurfactant screening showed that thirty-nine of the isolates were positive. Aspergillus niger SA1 was the highest biosurfactant producer, demonstrating surface tension, drop collapsing, oil displacement, and an emulsification index (E24) of 35.8 mN/m, 0.55 cm, 6.7 cm, and 70%, respectively. This isolate was therefore selected for biosurfactant optimization using the Fit Group model. The biosurfactant yield was increased 1.22 times higher than in the nonoptimized medium (8.02 g/l) under conditions of pH 6, temperature 35°C, waste frying oil (5.5 g), agitation rate of 200 rpm, and an incubation period of 7 days. Model significance and fitness analysis had an RMSE score of 0.852 and a p-value of 0.0016. The biosurfactant activities were surface tension (35.8 mN/m), drop collapsing (0.7 cm), oil displacement (4.5 cm), and E24 (65.0%). The time course of biosurfactant production was a growth-associated phase. The main outputs of the mathematical model for biomass yield were Yx/s (1.18), and μmax (0.0306) for biosurfactant yield was Yp/s (1.87) and Yp/x (2.51); for waste frying oil consumption the So was 55 g/l, and Ke was 2.56. To verify the model's accuracy, percentage errors between biomass and biosurfactant yields were determined by experimental work and calculated using model equations. The average error of biomass yield was 2.68%, and the average error percentage of biosurfactant yield was 3.39%.
Collapse
Affiliation(s)
- Mansour A. Al-hazmi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Tarek A. A. Moussa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nuha M. Alhazmi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Determination of an optimum extraction region for the recovery of bioactive compounds from olive leaves (Olea europaea L.) using green dynamic pressurized liquid extraction. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Amenaghawon AN, Odika P, Aiwekhoe SE. Optimization of nutrient medium composition for the production of lipase from waste cooking oil using response surface methodology and artificial neural networks. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1980395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Priscilla Odika
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Success Eghosa Aiwekhoe
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
7
|
Vieira IMM, Santos BLP, Ruzene DS, Silva DP. An overview of current research and developments in biosurfactants. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Ekpenyong M, Asitok A, Antigha R, Ogarekpe N, Ekong U, Asuquo M, Essien J, Antai S. Bioprocess Optimization of Nutritional Parameters for Enhanced Anti-leukemic L-Asparaginase Production by Aspergillus candidus UCCM 00117: A Sequential Statistical Approach. Int J Pept Res Ther 2021; 27:1501-1527. [PMID: 33716598 PMCID: PMC7942987 DOI: 10.1007/s10989-021-10188-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 11/03/2022]
Abstract
Sequential optimization of bioprocess nutritional conditions for production of glutaminase-near-free L-asparaginase by Aspergillus candidus UCCM 00117 was conducted under shake flask laboratory conditions. Catalytic and anti-cancer activities of the poly-peptide were evaluated using standard in vitro biochemical methods. Medium nutrients were selected by one-factor-at-a-time (OFAT) approach while Plackett-Burman design (PBD) screened potential factors for optimization. Path of steepest ascent (PSA) and response surface methodology (RSM) of a Min-Run-Res V fractional factorial of a central composite rotatable design (CCRD) were employed to optimize factor levels towards improved enzyme activity. A multi-objective approach using desirability function generated through predictor importance and weighted coefficient methodology was adopted for optimization. The approach set optimum bioprocess conditions as 49.55 g/L molasses, 64.98% corn steep liquor, 44.23 g/L asparagine, 1.73 g/L potassium, 0.055 g/L manganese and 0.043 g/L chromium (III) ions, at a composite desirability of 0.943 and an L-asparaginase activity of 5216.95U. The Sephadex-200 partially-purified polypeptide had a specific activity of 476.84 U/mg; 0.087U glutaminase activity, 36.46% yield and 20-fold protein purification. Anti-cancer activity potentials of the catalytic poly-peptide were dose-dependent with IC50 (µg/mL): 4.063 (HL-60), 13.75 (HCT-116), 15.83 (HeLa), 11.68 (MCF-7), 7.61 (HepG-2). The therapeutic enzyme exhibited 15-fold more cytotoxicity to myeloid leukemia cell line than to normal (HEK 238 T) cell. Optimum temperature and pH for activity were within physiological range. However, significant interactions between exposure time and levels of each of temperature and pH made interpretations of residual enzyme activities difficult. The manganese-dependent L-asparaginase from Aspergillu s candidus UCCM 00117 is recommended for further anticancer drug investigations.
Collapse
Affiliation(s)
- Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria.,Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria
| | - Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Richard Antigha
- Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State Nigeria
| | - Nkpa Ogarekpe
- Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State Nigeria
| | - Ubong Ekong
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Calabar, Calabar, Nigeria
| | - Marcus Asuquo
- Department of Hematology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Joseph Essien
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria.,International Centre for Energy and Environmental Sustainability Research (ICEESR), University of Uyo, Uyo, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| |
Collapse
|
9
|
Optimization of biosurfactant production from chemically mutated strain of Bacillus subtilis using waste automobile oil as low-cost substrate. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42398-020-00127-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Improved biosurfactant production from Aspergillus niger through chemical mutagenesis: characterization and RSM optimization. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2783-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|