1
|
Abdel-Haleem FM, Alhashemi Y, Rizk MS. PVC membrane bulk optode incorporating 4-nitrobenzo-15-crown-5 and sodium tetrakis(1-imidazolyl) borate for the pico-molar determination of silver ion in pharmaceutical formulation. Sci Rep 2024; 14:19984. [PMID: 39198688 PMCID: PMC11358330 DOI: 10.1038/s41598-024-70967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Silver ion (Ag+) is of harmful effects to both environment and human health. Ag+ soluble compounds and salts is used in treating mental illness, epilepsy, nicotine addiction, gastroenteritis, and infectious diseases, including syphilis and gonorrhea, and as anti-infective dermatological agent for controlling nose bleeding. However, high Ag+ doses cause several harmful effects to human health such as irreversible pigmentation of skin and eye, and problems to liver and kidney. A bulk membrane Optode is proposed in this work to measure the Ag+ concentration in the pharmaceutical formulations. The membrane optode is prepared from the ionophore 4-nitobenzo-15-crown-5, the ion-exchanger sodium tetrakis (imidazolyl) borate, the plasticizer o-nitrophenyl octyl ether, and the chromoionophore ETH 5294; these components are dissolved in the PVC/THF slurry to form the membrane. The optode is studied by atomic force microscope and UV-visible spectrophotometer, and its spectrum exhibits two maximum wavelengths of 550 and 665 nm, and response for Ag+ at these maximum wavelengths is reproducible in the concentration range of 10-11 to 10-8 M using acetate buffer of pH 5.0, with very low detection limit of 8.8 × 10-12 M. The most important feature in this work is the selectivity improvement for Ag+ over all interfering ions; the selectivity coefficient logarithmlogK A g + , c a t i o n opt is found to be - 4.3 for Cu2+, - 5.6 for Ni2+ and - 5.0 for Cd2+. The response mechanism is studied by FTIR, and it depends on ion-exchange of Ag+ and sodium imidazolyl borate, followed by the host-guest complexation between Ag+ and the crown ionophore, which is accompanied by concomitant deprotonation of the chromoionphore. The optode has a response time of 2-3 min within lifetime of 10 days with the same response. The optode can be applied successfully for Ag+ determination in the pharmaceutical formulation, PinkEye Relief® eye drop, which is used for treating inflammation, redness and water discharge of the eye; the high recovery and low standard deviation of the results using calibration curve method confirm the accuracy and precision of the proposed optode for its application in real samples.
Collapse
Affiliation(s)
- Fatehy M Abdel-Haleem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yaser Alhashemi
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Ministry of Interior, Farwaniya, Kuwait
| | - Mahmoud S Rizk
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Zulfi A, Hartati S, Nur’aini S, Noviyanto A, Nasir M. Electrospun Nanofibers from Waste Polyvinyl Chloride Loaded Silver and Titanium Dioxide for Water Treatment Applications. ACS OMEGA 2023; 8:23622-23632. [PMID: 37426230 PMCID: PMC10324079 DOI: 10.1021/acsomega.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023]
Abstract
The electrospun nanofiber membrane from polyvinyl chloride (PVC) waste for water treatment applications has been successfully produced. The PVC precursor solution was prepared by dissolving the PVC waste in DMAc solvent, and a centrifuge was used to separate undissolved materials from the precursor solution. Ag and TiO2 were added to the precursor solution before the electrospinning process. We studied the fabricated PVC membranes using SEM, EDS, XRF, XRD, and FTIR to study the fiber and membrane properties. The SEM images depicted that Ag and TiO2 addition has changed the morphology and size of fibers. The EDS images and XRF spectra confirmed the presence of Ag and TiO2 on the nanofiber membrane. The XRD spectra showed the amorphous structure of all membranes. The FTIR result indicated that the solvent completely evaporated throughout the spinning process. The fabricated PVC@Ag/TiO2 nanofiber membrane showed the photocatalytic degradation of dyes under visible light. The filtration test on the membrane PVC and PVC@Ag/TiO2 depicted that the presence of Ag and TiO2 affected the flux and separation factor of the membrane.
Collapse
Affiliation(s)
- Akmal Zulfi
- Research
Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Komplek BRIN Cisitu, Bandung 40135, Indonesia
| | - Sri Hartati
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Syarifa Nur’aini
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Alfian Noviyanto
- Nano
Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
- Department
of Mechanical Engineering, Mercu Buana University, Jl. Meruya Selatan, Kebun Jeruk, Jakarta 11650, Indonesia
| | - Muhamad Nasir
- Research
Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Komplek BRIN Cisitu, Bandung 40135, Indonesia
| |
Collapse
|
3
|
Mozafarjalali M, Hamidian AH, Sayadi MH. Microplastics as carriers of iron and copper nanoparticles in aqueous solution. CHEMOSPHERE 2023; 324:138332. [PMID: 36893866 DOI: 10.1016/j.chemosphere.2023.138332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
In recent years, microplastics have attracted a lot of attention due to their excessive spread in the environment, especially in aquatic ecosystems. By sorbing metal nanoparticles on their surface, microplastics can act as carriers of these pollutants in aquatic environments and thus cause adverse effects on the health of living organisms and humans. This study, investigated the adsorption of iron and copper nanoparticles on three different microplastics i.e. polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS). In this regard, the effects of parameters such as; pH, duration of contact and initial concentration of nanoparticle solution were investigated. By using atomic absorption spectroscopic analysis, the amount of adsorption of metal nanoparticles by microplastics was measured. The maximum amount of adsorption occurred at pH = 11, after a duration time of 60 min and at the initial concentration of 50 mg L-1. Scanning electron microscope (SEM) images showed that microplastics have different surface characteristics. The spectra obtained from Fourier transform infrared analysis (FTIR) before and after the adsorption of iron and copper nanoparticles on microplastics were not different, which showed that the adsorption of iron and copper nanoparticles on microplastics was physically and no new functional group was formed. X-ray energy diffraction spectroscopy (EDS) showed the adsorption of iron and copper nanoparticles on microplastics. By examining Langmuir and Freundlich adsorption isotherms and adsorption kinetics, it was found that the adsorption of iron and copper nanoparticles on microplastics is more consistent with the Freundlich adsorption isotherm. Also, pseudo-second-order kinetics is more suitable than pseudo-first-order kinetics. The adsorption ability of microplastics was as follows: PVC > PP > PS, and in general copper nanoparticles were adsorbed more than iron nanoparticles on microplastics.
Collapse
Affiliation(s)
- Malihe Mozafarjalali
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Mohammad Hossein Sayadi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
4
|
Silvestre WP, Duarte J, Tessaro IC, Baldasso C. Non-Supported and PET-Supported Chitosan Membranes for Pervaporation: Production, Characterization, and Performance. MEMBRANES 2022; 12:930. [PMID: 36295689 PMCID: PMC9607258 DOI: 10.3390/membranes12100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to develop non-supported and PET-supported chitosan membranes that were cross-linked with glutaraldehyde, then evaluate their physical-chemical, morphological, and mechanical properties, and evaluate their performance in the separation of ethanol/water and limonene/linalool synthetic mixtures by hydrophilic and target-organophilic pervaporation, respectively. The presence of a PET layer did not affect most of the physical-chemical parameters of the membranes, but the mechanical properties were enhanced, especially the Young modulus (76 MPa to 398 MPa), tensile strength (16 MPa to 27 MPa), and elongation at break (7% to 26%), rendering the supported membrane more resistant. Regarding the pervaporation tests, no permeate was obtained in target-organophilic pervaporation tests, regardless of membrane type. The support layer influenced the hydrophilic pervaporation parameters of the supported membrane, especially in reducing transmembrane flux (0.397 kg∙m-2∙h-1 to 0.121 kg∙m-2∙h-1) and increasing membrane selectivity (611 to 1974). However, the pervaporation separation index has not differed between membranes (228 for the non-supported and 218 for the PET-supported membrane), indicating that, overall, both membranes had a similar performance. Thus, the applicability of each membrane is linked to specific applications that require a more resistant membrane, greater transmembrane fluxes, and higher selectivity.
Collapse
Affiliation(s)
- Wendel Paulo Silvestre
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Jocelei Duarte
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Isabel Cristina Tessaro
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Camila Baldasso
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| |
Collapse
|
5
|
Shabani Z, Mohammadi T, Kasiri N, Sahebi S. Thin-Film Nanocomposite Forward Osmosis Membranes Prepared on PVC Substrates with Polydopamine Functionalized Zr-Based Metal Organic Frameworks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zahra Shabani
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Norollah Kasiri
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Soleyman Sahebi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
6
|
Akhi H, Vatanpour V, Zakeri F, Khataee A. Modification of EPVC membranes by incorporating tungsten trioxide (WO3) nanosheets to improve antifouling and dye separation properties. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
García A, Rodríguez B, Giraldo H, Quintero Y, Quezada R, Hassan N, Estay H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. MEMBRANES 2021; 11:93. [PMID: 33525631 PMCID: PMC7911616 DOI: 10.3390/membranes11020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
In the last decades, the incorporation of copper in polymeric membranes for water treatment has received greater attention, as an innovative potential solution against biofouling formation on membranes, as well as, by its ability to improve other relevant membrane properties. Copper has attractive characteristics: excellent antimicrobial activity, high natural abundance, low cost and the existence of multiple cost-effective synthesis routes for obtaining copper-based materials with tunable characteristics, which favor their incorporation into polymeric membranes. This study presents a comprehensive analysis of the progress made in the area regarding modified membranes for water treatment when incorporating copper. The notable use of copper materials (metallic and oxide nanoparticles, salts, composites, metal-polymer complexes, coordination polymers) for modifying microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO) and reverse osmosis (RO) membranes have been identified. Antibacterial and anti-fouling effect, hydrophilicity increase, improvements of the water flux, the rejection of compounds capacity and structural membrane parameters and the reduction of concentration polarization phenomena are some outstanding properties that improved. Moreover, the study acknowledges different membrane modification approaches to incorporate copper, such as, the incorporation during the membrane synthesis process (immobilization in polymer and phase inversion) or its surface modification using physical (coating, layer by layer assembly and electrospinning) and chemical (grafting, one-pot chelating, co-deposition and mussel-inspired PDA) surface modification techniques. Thus, the advantages and limitations of these modifications and their methods with insights towards a possible industrial applicability are presented. Furthermore, when copper was incorporated into membrane matrices, the study identified relevant detrimental consequences with potential to be solved, such as formation of defects, pore block, and nanoparticles agglomeration during their fabrication. Among others, the low modification stability, the uncontrolled copper ion releasing or leaching of incorporated copper material are also identified concerns. Thus, this article offers modification strategies that allow an effective copper incorporation on these polymeric membranes and solve these hinders. The article finishes with some claims about scaling up the implementation process, including long-term performance under real conditions, feasibility of production at large scale, and assessment of environmental impact.
Collapse
Affiliation(s)
- Andreina García
- Mining Engineering Department, FCFM, Universidad de Chile, Santiago 8370451, Chile
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Bárbara Rodríguez
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Hugo Giraldo
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Yurieth Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Rodrigo Quezada
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| |
Collapse
|
8
|
Polisetti V, Ray P. Nanoparticles modified Polyacrylonitrile/Polyacrylonitrile – Polyvinylidenefluoride blends as substrate of high flux anti‐fouling nanofiltration membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.50228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Veerababu Polisetti
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI), Council of Scientific & Industrial Research (CSIR) Bhavnagar India
| | - Paramita Ray
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI), Council of Scientific & Industrial Research (CSIR) Bhavnagar India
| |
Collapse
|
9
|
Elhady S, Bassyouni M, Mansour RA, Elzahar MH, Abdel-Hamid S, Elhenawy Y, Saleh MY. Oily Wastewater Treatment Using Polyamide Thin Film Composite Membrane Technology. MEMBRANES 2020; 10:membranes10050084. [PMID: 32354064 PMCID: PMC7281104 DOI: 10.3390/membranes10050084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/28/2023]
Abstract
In this study, polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membrane filtration was used in edible oil wastewater emulsion treatment. The PA-TFC membrane was characterized using mechanical, thermal, chemical, and physical tests. Surface morphology and cross-sections of TFCs were characterized using SEM. The effects of edible oil concentrations, average droplets size, and contact angle on separation efficiency and flux were studied in detail. Purification performance was enhanced using activated carbon as a pre-treatment unit. The performance of the RO unit was assessed by chemical oxygen demand (COD) removal and permeate flux. Oil concentration in wastewater varied between 3000 mg/L and 6000 mg/L. Oily wastewater showed a higher contact angle (62.9°) than de-ionized water (33°). Experimental results showed that the presence of activated carbon increases the permeation COD removal from 94% to 99%. The RO membrane filtration coupled with an activated carbon unit of oily wastewater is a convenient hybrid technique for removal of high-concentration edible oil wastewater emulsion up to 99%. Using activated carbon as an adsorption pre-treatment unit improved the permeate flux from 34 L/m2hr to 75 L/m2hr.
Collapse
Affiliation(s)
- Sarah Elhady
- Public Works Department of Sanitary and Environmental Engineering, the High Institute of Engineering and Technology in New Damietta, New Damietta 34518, Egypt
| | - Mohamed Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Materials Science Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
- Correspondence: ; Tel.: +2-011-596-75357
| | - Ramadan A. Mansour
- Chemical Engineering Department, Higher Institute of Engineering and Technology, New Damietta, Damietta 34518, Egypt
| | - Medhat H. Elzahar
- Sanitary and Environmental Engineering, Faculty of Engineering, Port Said 42526, Egypt
- Department of Civil Engineering, Giza Engineering Institute, Elmoneeb, Giza 12511, Egypt
| | - Shereen Abdel-Hamid
- Department of Chemical Engineering, Egyptian Academy for Engineering and Advanced Technology, Affiliated to Ministry of Military Production, Al Salam city 3056, Egypt
| | - Yasser Elhenawy
- Department of Mechanical Engineering, Faculty of Engineering, Port Said University, Port Fouad 42526, Egypt
| | - Mamdou Y. Saleh
- Sanitary and Environmental Engineering, Faculty of Engineering, Port Said 42526, Egypt
- High Institute of Engineering and Technology, El-Manzala, Ad Daqahliyah 35642, Egypt
| |
Collapse
|