1
|
Mundo Rivera VM, Tlacuahuac Juárez JR, Murillo Melo NM, Leyva Garcia N, Magaña JJ, Cordero Martínez J, Jiménez Gutierrez GE. Natural Autophagy Activators to Fight Age-Related Diseases. Cells 2024; 13:1611. [PMID: 39404375 PMCID: PMC11476028 DOI: 10.3390/cells13191611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The constant increase in the elderly population presents significant challenges in addressing new social, economic, and health problems concerning this population. With respect to health, aging is a primary risk factor for age-related diseases, which are driven by interconnected molecular hallmarks that influence the development of these diseases. One of the main mechanisms that has attracted more attention to aging is autophagy, a catabolic process that removes and recycles damaged or dysfunctional cell components to preserve cell viability. The autophagy process can be induced or deregulated in response to a wide range of internal or external stimuli, such as starvation, oxidative stress, hypoxia, damaged organelles, infectious pathogens, and aging. Natural compounds that promote the stimulation of autophagy regulatory pathways, such as mTOR, FoxO1/3, AMPK, and Sirt1, lead to increased levels of essential proteins such as Beclin-1 and LC3, as well as a decrease in p62. These changes indicate the activation of autophagic flux, which is known to be decreased in cardiovascular diseases, neurodegeneration, and cataracts. The regulated administration of natural compounds offers an adjuvant therapeutic alternative in age-related diseases; however, more experimental evidence is needed to support and confirm these health benefits. Hence, this review aims to highlight the potential benefits of natural compounds in regulating autophagy pathways as an alternative approach to combating age-related diseases.
Collapse
Affiliation(s)
- Vianey M. Mundo Rivera
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
| | - José Roberto Tlacuahuac Juárez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Nadia Mireya Murillo Melo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Joaquín Cordero Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | |
Collapse
|
2
|
Verma VK, Bhardwaj P, Prajapati V, Bhatia A, Purkait S, Arya DS. Flavonoids as therapeutics for myocardial ischemia-reperfusion injury: a comprehensive review on preclinical studies. Lab Anim Res 2024; 40:32. [PMID: 39237965 PMCID: PMC11376054 DOI: 10.1186/s42826-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Ischemic heart disease is the most prevalent cause of death worldwide affecting both the gender of all age groups. The high mortality rate is due to damage of myocardial tissue that emanates at the time of myocardial ischemia and re-oxygenation, thus averting reperfusion injury is recognized as a potential way to reduce acute cardiac injury and subsequent mortality. Flavonoids are polyphenol derivatives of plant origin and empirical shreds of evidence substantiate their numerous activities such as antioxidant, anti-inflammatory, anti-apoptotic, and anti-thrombotic activity, leading to their role in cardio protection. Recent investigations have unveiled the capacity of flavonoids to impede pivotal regulatory enzymes, signaling molecules, and transcription factors that orchestrate the mediators participating in the inflammatory cascade. The present comprehensive review, dwells on the preclinical studies on the effectiveness of flavonoids from the year 2007 to 2023, for the prevention and therapeutics for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Bhardwaj
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vaishali Prajapati
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Avantika Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sayani Purkait
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
4
|
Hosseini A, Ghorbani A, Alavi MS, Forouhi N, Rajabian A, Boroumand-Noughabi S, Sahebkar A, Eid AH. Cardioprotective effect of Sanguisorba minor against isoprenaline-induced myocardial infarction in rats. Front Pharmacol 2023; 14:1305816. [PMID: 38223198 PMCID: PMC10784747 DOI: 10.3389/fphar.2023.1305816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction: Oxidative stress is a major instigator of various cardiovascular diseases, including myocardial infarction (MI). Despite available drugs, there is still an increased need to look for alternative therapies or identify new bioactive compounds. Sanguisorba minor (S. minor) is a native herb characterized by its potent antioxidant activity. This study was designed to evaluate the effect of S. minor against isoprenaline-induced MI. Methods: Rats were treated with the hydro-ethanolic extract of the aerial parts of S. minor at doses of 100 or 300 mg/kg orally for 9 days. Isoprenaline was injected subcutaneously at the dose of 85 mg/kg on days 8 and 9. Then, the activities of various cardiac injury markers including cardiac troponin (cTnT), lactate dehydrogenase (LDH), creatinine kinase muscle brain (CK-MB), creatinine phosphokinase (CPK), and antioxidant enzymes in serum were determined. Malondialdehyde (MDA) and thiol content were measured in cardiac tissue, and histopathological analysis was conducted. Results: Our results show that isoprenaline increased the serum levels of cTnT, LDH, CK-MB, and CPK (p < 0.001) and elevated MDA levels (p < 0.001) in cardiac tissue. Isoprenaline also reduced superoxide dismutase (SOD), catalase, and thiol content (p < 0.001). Importantly, the extract abolished isoprenaline-induced MI by elevating SOD and catalase (p < 0.001), reducing levels of MDA, and diminishing levels of cTnT, LDH, CK-MB, and CPK cardiac markers (p < 0.001). Histopathological studies of the cardiac tissue showed isoprenaline-induced injury that was significantly attenuated by the extract. Conclusion: Our results suggest that S. minor could abrogate isoprenaline-induced cardiac toxicity due to its ability to mitigate oxidative stress.
Collapse
Affiliation(s)
- Azar Hosseini
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Ghorbani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Forouhi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Chen T, Zhang Y, Chen M, Yang P, Wang Y, Zhang W, Huang W, Zhang W. Tongmai Yangxin pill alleviates myocardial no-reflow by activating GPER to regulate HIF-1α signaling and downstream potassium channels. PHARMACEUTICAL BIOLOGY 2023; 61:499-513. [PMID: 36896463 PMCID: PMC10013430 DOI: 10.1080/13880209.2023.2184481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT The Tongmai Yangxin pill (TMYX) has potential clinical effects on no-reflow (NR); however, the effective substances and mechanisms remain unclear. OBJECTIVE This study evaluates the cardioprotective effects and molecular mechanisms of TMYX against NR. MATERIALS AND METHODS We used a myocardial NR rat model to confirm the effect and mechanism of action of TMYX in alleviating NR. Sprague-Dawley (SD) rats were divided into Control (Con), sham, NR, TMYX (4.0 g/kg), and sodium nitroprusside (SNP, 5.0 mg/kg), and received their treatments once a day for one week. In vitro studies in isolated coronary microvasculature of NR rats and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of TMYX and determine the main components, targets, and pathways of TMYX, respectively. RESULTS TMYX (4.0 g/kg) showed therapeutic effects on NR by improving the cardiac structure and function, reducing NR, ischemic areas, and cardiomyocyte injury, and decreasing the expression of cardiac troponin I (cTnI). Moreover, the mechanism of TMYX predicted by network pharmacology is related to the HIF-1, NF-κB, and TNF signaling pathways. In vivo, TMYX decreased the expression of MPO, NF-κB, and TNF-α and increased the expression of GPER, p-ERK, and HIF-1α. In vitro, TMYX enhanced the diastolic function of coronary microvascular cells; however, this effect was inhibited by G-15, H-89, L-NAME, ODQ and four K+ channel inhibitors. CONCLUSIONS TMYX exerts its pharmacological effects in the treatment of NR via multiple targets. However, the contribution of each pathway was not detected, and the mechanisms should be further investigated.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
- Institute of Traditional Chinese medicine, Tianjin University of Traditional Chinese medicine, Tianjin, People's Republic of China
| | - Yulong Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
| | - Manyun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
| | - Pu Yang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yi Wang
- Institute of Traditional Chinese medicine, Tianjin University of Traditional Chinese medicine, Tianjin, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China
| |
Collapse
|
6
|
Zhang W, Zheng Y, Yan F, Dong M, Ren Y. Research progress of quercetin in cardiovascular disease. Front Cardiovasc Med 2023; 10:1203713. [PMID: 38054093 PMCID: PMC10694509 DOI: 10.3389/fcvm.2023.1203713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Quercetin is one of the most common flavonoids. More and more studies have found that quercetin has great potential utilization value in cardiovascular diseases (CVD), such as antioxidant, antiplatelet aggregation, antibacterial, cholesterol lowering, endothelial cell protection, etc. However, the medicinal value of quercetin is mostly limited to animal models and preclinical studies. Due to the complexity of the human body and functional structure compared to animals, more research is needed to explore whether quercetin has the same mechanism of action and pharmacological value as animal experiments. In order to systematically understand the clinical application value of quercetin, this article reviews the research progress of quercetin in CVD, including preclinical and clinical studies. We will focus on the relationship between quercetin and common CVD, such as atherosclerosis, myocardial infarction, ischemia reperfusion injury, heart failure, hypertension and arrhythmia, etc. By elaborating on the pathophysiological mechanism and clinical application research progress of quercetin's protective effect on CVD, data support is provided for the transformation of quercetin from laboratory to clinical application.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yan Zheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Yazhou Ren
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24065313. [PMID: 36982389 PMCID: PMC10048972 DOI: 10.3390/ijms24065313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Safflower (Carthamus tinctorius. L) possesses anti-tumor, anti-thrombotic, anti-oxidative, immunoregulatory, and cardio-cerebral protective effects. It is used clinically for the treatment of cardio-cerebrovascular disease in China. This study aimed to investigate the effects and mechanisms of action of safflower extract on myocardial ischemia–reperfusion (MIR) injury in a left anterior descending (LAD)-ligated model based on integrative pharmacology study and ultra-performance liquid chromatography–quadrupole time-of-flight-tandem mass spectrometer (UPLC-QTOF-MS/MS). Safflower (62.5, 125, 250 mg/kg) was administered immediately before reperfusion. Triphenyl tetrazolium chloride (TTC)/Evans blue, echocardiography, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) ability, and superoxide dismutase (SOD) levels were determined after 24 h of reperfusion. Chemical components were obtained using UPLC-QTOF-MS/MS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to analyze mRNA and protein levels, respectively. Safflower dose-dependently reduced myocardial infarct size, improved cardiac function, decreased LDH levels, and increased SOD levels in C57/BL6 mice. A total of 11 key components and 31 hub targets were filtered based on the network analysis. Comprehensive analysis indicated that safflower alleviated inflammatory effects by downregulating the expression of NFκB1, IL-6, IL-1β, IL-18, TNFα, and MCP-1 and upregulating NFκBia, and markedly increased the expression of phosphorylated PI3K, AKT, PKC, and ERK/2, HIF1α, VEGFA, and BCL2, and decreased the level of BAX and phosphorylated p65. Safflower shows a significant cardioprotective effect by activating multiple inflammation-related signaling pathways, including the NFκB, HIF-1α, MAPK, TNF, and PI3K/AKT signaling pathways. These findings provide valuable insights into the clinical applications of safflower.
Collapse
|
8
|
Tomou EM, Papakyriakopoulou P, Skaltsa H, Valsami G, Kadoglou NPE. Bio-Actives from Natural Products with Potential Cardioprotective Properties: Isolation, Identification, and Pharmacological Actions of Apigenin, Quercetin, and Silibinin. Molecules 2023; 28:molecules28052387. [PMID: 36903630 PMCID: PMC10005323 DOI: 10.3390/molecules28052387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. As a result, pharmaceutical and non-pharmaceutical interventions modifying risk factors for CVDs are a top priority of scientific research. Non-pharmaceutical therapeutical approaches, including herbal supplements, have gained growing interest from researchers as part of the therapeutic strategies for primary or secondary prevention of CVDs. Several experimental studies have supported the potential effects of apigenin, quercetin, and silibinin as beneficial supplements in cohorts at risk of CVDs. Accordingly, this comprehensive review focused critically on the cardioprotective effects/mechanisms of the abovementioned three bio-active compounds from natural products. For this purpose, we have included in vitro, preclinical, and clinical studies associated with atherosclerosis and a wide variety of cardiovascular risk factors (hypertension, diabetes, dyslipidemia, obesity, cardiac injury, and metabolic syndrome). In addition, we attempted to summarize and categorize the laboratory methods for their isolation and identification from plant extracts. This review unveiled many uncertainties which are still unexplored, such as the extrapolation of experimental results to clinical practice, mainly due to the small clinical studies, heterogeneous doses, divergent constituents, and the absence of pharmacodynamic/pharmacokinetic analyses.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | | |
Collapse
|
9
|
Saeedi-Boroujeni A, Purrahman D, Shojaeian A, Poniatowski ŁA, Rafiee F, Mahmoudian-Sani MR. Progranulin (PGRN) as a regulator of inflammation and a critical factor in the immunopathogenesis of cardiovascular diseases. J Inflamm (Lond) 2023; 20:1. [PMID: 36658641 PMCID: PMC9851114 DOI: 10.1186/s12950-023-00327-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Immune dysregulation has been identified as a critical cause of the most common types of cardiovascular diseases (CVDs). Notably, the innate and adaptive immune responses under physiological conditions are typically regulated with high sensitivity to avoid the exacerbation of inflammation, but any dysregulation can probably be associated with CVDs. In this respect, progranulin (PGRN) serves as one of the main components of the regulation of inflammatory processes, which significantly contributes to the immunopathogenesis of such disorders. PGRN has been introduced among the secreted growth factors as one related to wound healing, inflammation, and human embryonic development, as well as a wide variety of autoimmune diseases. The relationship between the serum PGRN and TNF-α ratio with the spontaneous bacterial peritonitis constitute one of the independent predictors of these conditions. The full-length PGRN can thus effectively reduce the calcification of valve interstitial cells, and the granulin precursor (GRN), among the degradation products of PGRN, can be beneficial. Moreover, it was observed that, PGRN protects the heart against ischemia-reperfusion injury. Above all, PGRN also provides protection in the initial phase following myocardial ischemia-reperfusion injury. The protective impact of PGRN on this may be associated with the early activation of the PI3K/Akt signaling pathway. PGRN also acts as a protective factor in hyperhomocysteinemia, probably by down-regulating the wingless-related integration site Wnt/β-catenin signaling pathway. Many studies have further demonstrated that SARS-CoV-2 (COVID-19) has dramatically increased the risks of CVDs due to inflammation, so PGRN has drawn much more attention among scholars. Lysosomes play a pivotal role in the inflammation process, and PGRN is one of the key regulators in their functioning, which contributes to the immunomodulatory mechanism in the pathogenesis of CVDs. Therefore, investigation of PGRN actions can help find new prospects in the treatment of CVDs. This review aims to summarize the role of PGRN in the immunopathogenesis of CVD, with an emphasis on its treatment.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Daryush Purrahman
- grid.411230.50000 0000 9296 6873Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shojaeian
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Łukasz A. Poniatowski
- grid.491786.50000 0001 0211 9062Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Fatemeh Rafiee
- grid.469309.10000 0004 0612 8427Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- grid.411230.50000 0000 9296 6873Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ,grid.411230.50000 0000 9296 6873Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Effects of Saccharomyces cerevisiae and Starmerella bacillaris on the physicochemical and sensory characteristics of sparkling pear cider (Perry). Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThis study was aimed to produce pear cider (Perry), using small caliber pears cv Abate Fètel, fermented by Starmerella bacillaris and Saccharomyces cerevisiae in co-inoculated (COF) and sequential (SEF) mixed cultures in comparison with S. cerevisiae monoculture fermentation (AXF), evaluating the influence of yeast starter cultures on Perry characteristics. The perries were re-fermented in bottle by S. cerevisiae strain EC1118. During primary fermentation, growth and fermentation kinetics were different in the co-inoculated and sequential fermentations in comparison with pure S. cerevisiae fermentation; however, sugars were depleted, and 6% (v/v) ethanol was produced in all the trials. Glycerol content was significantly higher in mixed fermentations due to Starm. bacillaris metabolism (+ 20% in COF, and + 42% in SEF conditions). After re-fermentation in bottle, higher levels of 3-Methyl-1-butanol, 1-propanol, acetaldehyde and esters were detected in Perry from the mixed fermentations. All the Perries were accepted by the consumers (general liking values from 6.01 to 6.26). Perries’ appearance from mixed fermentations was described as less intense and more clear. The use of small caliber pears cv Abate Fètel and Starm. bacillaris in combination with S. cerevisiae in Perry production might be a suitable tool to obtain novel beverages with distinctive organoleptic features.
Collapse
|
11
|
Zhou Y, Suo W, Zhang X, Lv J, Liu Z, Liu R. Roles and mechanisms of quercetin on cardiac arrhythmia: A review. Biomed Pharmacother 2022; 153:113447. [DOI: 10.1016/j.biopha.2022.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
12
|
Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals (Basel) 2022; 15:ph15081019. [PMID: 36015169 PMCID: PMC9412669 DOI: 10.3390/ph15081019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quercetin, as a member of flavonoids, has emerged as a potential therapeutic agent in cardiovascular diseases (CVDs) in recent decades. In this comprehensive literature review, our goal was a critical appraisal of the pathophysiological mechanisms of quercetin in relation to the classical cardiovascular risk factors (e.g., hyperlipidemia), atherosclerosis, etc. We also assessed experimental and clinical data about its potential application in CVDs. Experimental studies including both in vitro methods and in vivo animal models mainly outline the following effects of quercetin: (1) antihypertensive, (2) hypolipidemic, (3) hypoglycemic, (4) anti-atherosclerotic, and (5) cardioprotective (suppressed cardiotoxicity). From the clinical point of view, there are human studies and meta-analyses implicating its beneficial effects on glycemic and lipid parameters. In contrast, other human studies failed to demonstrate consistent favorable effects of quercetin on other cardiometabolic risk factors such as MS, obesity, and hypertension, underlying the need for further investigation. Analyzing the reason of this inconsistency, we identified significant drawbacks in the clinical trials’ design, while the absence of pharmacokinetic/pharmacodynamic tests prior to the studies attenuated the power of clinical results. Therefore, additional well-designed preclinical and clinical studies are required to examine the therapeutic mechanisms and clinical efficacy of quercetin in CVDs.
Collapse
|
13
|
Azam T, Zhang H, Zhou F, Wang X. Recent Advances on Drug Development and Emerging Therapeutic Agents Through Targeting Cellular Homeostasis for Ageing and Cardiovascular Disease. FRONTIERS IN AGING 2022; 3:888190. [PMID: 35821839 PMCID: PMC9261412 DOI: 10.3389/fragi.2022.888190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Ageing is a progressive physiological process mediated by changes in biological pathways, resulting in a decline in tissue and cellular function. It is a driving factor in numerous age-related diseases including cardiovascular diseases (CVDs). Cardiomyopathies, hypertension, ischaemic heart disease, and heart failure are some of the age-related CVDs that are the leading causes of death worldwide. Although individual CVDs have distinct clinical and pathophysiological manifestations, a disturbance in cellular homeostasis underlies the majority of diseases which is further compounded with aging. Three key evolutionary conserved signalling pathways, namely, autophagy, mitophagy and the unfolded protein response (UPR) are involved in eliminating damaged and dysfunctional organelle, misfolded proteins, lipids and nucleic acids, together these molecular processes protect and preserve cellular homeostasis. However, amongst the numerous molecular changes during ageing, a decline in the signalling of these key molecular processes occurs. This decline also increases the susceptibility of damage following a stressful insult, promoting the development and pathogenesis of CVDs. In this review, we discuss the role of autophagy, mitophagy and UPR signalling with respect to ageing and cardiac disease. We also highlight potential therapeutic strategies aimed at restoring/rebalancing autophagy and UPR signalling to maintain cellular homeostasis, thus mitigating the pathological effects of ageing and CVDs. Finally, we highlight some limitations that are likely hindering scientific drug research in this field.
Collapse
Affiliation(s)
- Tayyiba Azam
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongyuan Zhang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fangchao Zhou
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Blocking the Aryl Hydrocarbon Receptor Alleviates Myocardial Ischemia/Reperfusion Injury in Rats. Curr Med Sci 2022; 42:966-973. [DOI: 10.1007/s11596-022-2601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
|
15
|
Han X, Zhang G, Chen G, Wu Y, Xu T, Xu H, Liu B, Zhou Y. Buyang Huanwu Decoction promotes angiogenesis in myocardial infarction through suppression of PTEN and activation of the PI3K/Akt signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114929. [PMID: 34952189 DOI: 10.1016/j.jep.2021.114929] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial infarction (MI) is the most severe subtype of coronary artery disease. Recent studies have demonstrated that the repair process and prognosis of MI are closely related to microcirculatory function in myocardial tissue. Buyang Huanwu Decoction (BYHWD) has shown great potential in the treatment of MI. However, the effects and mechanisms of BYHWD on angiogenesis post-MI remain unclear. AIM OF THE STUDY The study aimed to explore the promotion of angiogenesis by BYHWD post-MI and the potential mechanisms in vivo and in vitro. MATERIALS AND METHODS MI in mice was induced by permanent ligature of the coronary artery. The sample was divided into sham, model, and BYHWD treatment groups. After four weeks, the effects of BYHWD treatment on cardiac function were evaluated by echocardiography and HE and Masson staining. Angiogenesis was detected by CD 31 immunofluorescence staining in vivo. Then, various databases were searched to identify the corresponding targets of BYHWD in order to explore the molecular mechanisms underlying its effects in MI. Moreover, Western blot and immunohistochemistry were employed to measure the PTEN/PI3K/Akt/GSK3β signalling pathway and VEGFA expression in MI mice. Finally, the effects of BYHWD on cell angiogenesis and the activation of the PTEN/PI3K/Akt/GSK3β pathway in primary HUVECs were investigated. Overexpression of PTEN was achieved by an adenovirus vector encoding PTEN. RESULTS BYHWD significantly promoted angiogenesis and improved cardiac function in MI mice. Target prediction analysis suggested that BYHWD ameliorates MI via the PI3K/Akt pathway. BYHWD promoted angiogenesis post-MI by suppressing PTEN and activating the PI3K/Akt/GSK3β signalling pathway in vivo and in vitro. Moreover, the effects of BYHWD on HUVEC angiogenesis and the expression of PI3K/Akt/GSK3β signalling pathway-associated proteins were partially abrogated by the overexpression of PTEN. CONCLUSION Collectively, this study demonstrates that BYHWD exerts cardioprotective effects against MI by targeting angiogenesis. These effects are related to suppressing PTEN and activating the PI3K/Akt/GSK3β signalling pathway by BYHWD.
Collapse
Affiliation(s)
- Xin Han
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Tong Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Chen W, Zhong Y, Feng N, Guo Z, Wang S, Xing D. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases. Mol Med 2021; 27:123. [PMID: 34592918 PMCID: PMC8482621 DOI: 10.1186/s10020-021-00358-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related cardiovascular disease is the leading cause of death in elderly populations. Coxibs, including celecoxib, valdecoxib, etoricoxib, parecoxib, lumiracoxib, and rofecoxib, are selective cyclooxygenase-2 (COX-2) inhibitors used to treat osteoarthritis and rheumatoid arthritis. However, many coxibs have been discontinued due to adverse cardiovascular events. COX-2 contains cyclooxygenase (COX) and peroxidase (POX) sites. COX-2 inhibitors block COX activity without affecting POX activity. Recently, quercetin-like flavonoid compounds with OH groups in their B-rings have been found to serve as activators of COX-2 by binding the POX site. Galangin-like flavonol compounds serve as inhibitors of COX-2. Interestingly, nabumetone, flurbiprofen axetil, piketoprofen-amide, and nepafenac are ester prodrugs that inhibit COX-2. The combination of galangin-like flavonol compounds with these prodrug metabolites may lead to the development of novel COX-2 inhibitors. This review focuses on the most compelling evidence regarding the role and mechanism of COX-2 in cardiovascular diseases and demonstrates that quercetin-like compounds exert potential cardioprotective effects by serving as cofactors of COX-2.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Yingjie Zhong
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Nuan Feng
- Department of Nutrition, Qingdao Women and Children's Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Ghafouri-Fard S, Shoorei H, Khanbabapour Sasi A, Taheri M, Ayatollahi SA. The impact of the phytotherapeutic agent quercetin on expression of genes and activity of signaling pathways. Biomed Pharmacother 2021; 141:111847. [PMID: 34198048 DOI: 10.1016/j.biopha.2021.111847] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Quercetin is a flavonoid existing in different herbs, fruits, seeds, nuts and tea. It has beneficial effects on human health through mediating antioxidant activities, immune-modulatory impacts and regulating metabolic pathways. These effects are most probably induced through modulation of activity of signaling pathways and expression of genes. Several in vitro studies have verified anti-proliferative effects of quercetin and its effect on expression of apoptotic genes and cell cycle-related genes. Moreover, through modulation of a number of proteins such as NF-kB, PARP, STAT3, Bax, Bcl-2, COX2, and cytokines, quercetin has beneficial effects in neurodegenerative disorders, liver diseases and diabetes. PI3K/AKT is the mostly linked pathway with beneficial effects of quercetin. In the current manuscript, we explain the impact of quercetin on expression of genes and function of cellular signaling cascades in different contexts.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khanbabapour Sasi
- Biochemistry Group, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
19
|
Javadinia SS, Abbaszadeh-Goudarzi K, Mahdian D, Hosseini A, Ghalenovi M, Javan R. A review of the protective effects of quercetin-rich natural compounds for treating ischemia-reperfusion injury. Biotech Histochem 2021; 97:237-246. [PMID: 34157912 DOI: 10.1080/10520295.2021.1937701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ischemia-reperfusion (IR) injury causes dysfunction of tissues and organs, and oxidative stress plays an important role. During IR, reactive oxygen species (ROS) are increased. Antioxidants are used to decrease ROS associated with IR. We review the protective effects of quercetin-rich natural antioxidants against IR. We searched PubMed, ScienceDirect, Scopus and Cochrane databases using the keywords: ischemic reperfusion, quercetin, antioxidant and herbal medicine. The effects of quercetin during IR have been reported for animal models in vitro and in vivo. Quercetin-rich plants including Abelmoschus esculentus, coriander, Hypericum perforatum, onion, Psidium guajava, buckwheat and Rosa laevigata Michx have been used to reduce oxidative stress damage to various organs during IR.
Collapse
Affiliation(s)
- Sara Sadat Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kazem Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Ghalenovi
- Faculty of Midwifery, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Roghayeh Javan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
20
|
Sun C, Zhang X, Yu F, Liu C, Hu F, Liu L, Chen J, Wang J. Atractylenolide I alleviates ischemia/reperfusion injury by preserving mitochondrial function and inhibiting caspase-3 activity. J Int Med Res 2021; 49:300060521993315. [PMID: 33641489 PMCID: PMC7923999 DOI: 10.1177/0300060521993315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury causes various severe heart diseases, including myocardial infarction. This study aimed to determine the therapeutic effect of atractylenolide I (ATR-I), which is an active ingredient isolated from Atractylodes macrocephala, on myocardial I/R injury. METHODS Male Sprague-Dawley rats were randomly allocated to the five following groups (nine rats/group): control, I/R, and I/R + ATR-I preconditioning (10, 50, and 250 µg). The effects of ATR-I on rats with I/R injury were verified in cardiomyocytes with hypoxia/reoxygenation. Production of reactive oxygen species was determined. The proliferative ability of cardiomyocytes was detected using the bromodeoxyuridine assay. Mitochondrial membrane potential was measured using flow cytometry. Cellular apoptosis was assessed by flow cytometry and the terminal dUTP-digoxigenin nick end labeling assay. RESULTS I/R and hypoxia/reoxygenation injury increased mitochondrial dysfunction and activated caspase-3 and Bax/B cell lymphoma 2 expression in vitro and in vivo. ATR-I pretreatment dose-dependently significantly attenuated myocardial apoptosis and suppressed oxidative stress as reflected by increased mitochondrial DNA copy number and superoxide dismutase activity, and decreased reactive oxygen species and Ca2+ content. CONCLUSION ATR-I protects against I/R injury by protecting mitochondrial function and inhibiting activation of caspase-3.
Collapse
Affiliation(s)
- Caiqin Sun
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Xuesong Zhang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Fei Yu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Chen Liu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Fangbin Hu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Li Liu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Jing Chen
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Jue Wang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| |
Collapse
|
21
|
Ghafouri-Fard S, Shabestari FA, Vaezi S, Abak A, Shoorei H, Karimi A, Taheri M, Basiri A. Emerging impact of quercetin in the treatment of prostate cancer. Biomed Pharmacother 2021; 138:111548. [PMID: 34311541 DOI: 10.1016/j.biopha.2021.111548] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Quercetin is a flavonoid agent detected in fruits and vegetables with anti-inflammatory, antioxidant, and anticancer effects. This flavonoid can suppress cell cycle transition and induce apoptosis in neoplastic cells. Therapeutic effects of quercetin have been assessed in diverse cancers including prostate cancer through the establishment of in vitro and in vivo experiments. Moreover, this agent might prevent the initiation of this type of cancer as it indirectly blocks the activity of promoters of two important genes in the pathogenesis of prostate cancer i.e. androgen receptor (AR) and prostate specific antigen (PSA). Several in vitro investigations have identified the differential influence of quercetin on normal prostate cells versus neoplastic cells, emphasizing its specific cytotoxic effects on cancerous cells. The most appreciated route of quercetin effect on prostate cancer cells is the detachment of Bax from Bcl-xL and the stimulation of caspase families. Besides, quercetin might enhance the effects of other therapeutic options against prostate cancer. For instance, a combination of TNF-related apoptosis-inducing ligand (TRAIL) and quercetin has been recommended as a novel modality for the treatment of prostate cancer. These kinds of strategies might overcome resistance to apoptosis in cancer cells. In the current paper, we summarize the recent data about the preventive and therapeutic influences of quercetin in prostate cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saba Vaezi
- Department of Nutrition, Marand Medical Science Branch, Islamic Azad University, Marand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Arash Karimi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic Potential of Quercetin to Alleviate Endothelial Dysfunction in Age-Related Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:658400. [PMID: 33860002 PMCID: PMC8042157 DOI: 10.3389/fcvm.2021.658400] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelium occupies a catalog of functions that contribute to the homeostasis of the cardiovascular system. It is a physically active barrier between circulating blood and tissue, a regulator of the vascular tone, a biochemical processor and a modulator of coagulation, inflammation, and immunity. Given these essential roles, it comes to no surprise that endothelial dysfunction is prodromal to chronic age-related diseases of the heart and arteries, globally termed cardiovascular diseases (CVD). An example would be ischemic heart disease (IHD), which is the main cause of death from CVD. We have made phenomenal advances in treating CVD, but the aging endothelium, as it senesces, always seems to out-run the benefits of medical and surgical therapies. Remarkably, many epidemiological studies have detected a correlation between a flavonoid-rich diet and a lower incidence of mortality from CVD. Quercetin, a member of the flavonoid class, is a natural compound ubiquitously found in various food sources such as fruits, vegetables, seeds, nuts, and wine. It has been reported to have a wide range of health promoting effects and has gained significant attention over the years. A growing body of evidence suggests quercetin could lower the risk of IHD by mitigating endothelial dysfunction and its risk factors, such as hypertension, atherosclerosis, accumulation of senescent endothelial cells, and endothelial-mesenchymal transition (EndoMT). In this review, we will explore these pathophysiological cascades and their interrelation with endothelial dysfunction. We will then present the scientific evidence to quercetin's anti-atherosclerotic, anti-hypertensive, senolytic, and anti-EndoMT effects. Finally, we will discuss the prospect for its clinical use in alleviating myocardial ischemic injuries in IHD.
Collapse
Affiliation(s)
- Olina Dagher
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Pauline Mury
- Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Pierre Emmanuel Noly
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Eric Thorin
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Michel Carrier
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
23
|
Jia JY, Zang EH, Lv LJ, Li QY, Zhang CH, Xia Y, Zhang L, Dang LS, Li MH. Flavonoids in myocardial ischemia-reperfusion injury: Therapeutic effects and mechanisms. CHINESE HERBAL MEDICINES 2021; 13:49-63. [PMID: 36117755 PMCID: PMC9476686 DOI: 10.1016/j.chmed.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/05/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Ischemic heart diseases are one of the major causes of death worldwide. Effective restoration of blood flow can significantly improve patients' quality of life and reduce mortality. However, reperfusion injury cannot be ignored. Flavonoids possess well-established antioxidant properties; They also have other benefits that may be relevant for ameliorating myocardial ischemia-reperfusion injury (MIRI). In this review, we focus on flavonoids with cardiovascular-protection function and emphasize their pharmacological effects. The main mechanisms of flavonoid pharmacological activities against MIRI involve the following aspects: a) antioxidant, b) anti-inflammatory, c) anti-platelet aggregation, d) anti-apoptosis, and e) myocardial-function regulation activities. We also summarized the effectiveness of flavonoids for MIRI.
Collapse
Affiliation(s)
- Jun-ying Jia
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | | | - Li-juan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Qin-yu Li
- Baotou Medical College, Baotou 014040, China
| | | | - Ying Xia
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
| | - Lei Zhang
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Lian-sheng Dang
- Department of Geriatrics, The First Affiliated Hospital of Baotou Medical College, Baotou 014000, China
| | - Min-hui Li
- Baotou Medical College, Baotou 014040, China
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Medical University, Hohhot 010110, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources and Utilization, Baotou Medical College, Baotou 014040, China
| |
Collapse
|
24
|
Gong L, Wang X, Pan J, Zhang M, Liu D, Liu M, Li L, An F. The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats. Open Med (Wars) 2020; 15:47-57. [PMID: 33385063 PMCID: PMC7754177 DOI: 10.1515/med-2021-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/10/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Objective The purpose of the present study was to evaluate the role of co-treatment of rosuvastatin (RSV) and dapagliflozin (DGZ) preconditioning in myocardium ischemia/reperfusion (I/R) injury and to further investigate the underlying mechanism. Methods Sprague-Dawley (SD) rats (n = 25) were divided into five groups randomly: (1) Sham, (2) I/R, (3) I/R + RSV (10 mg/kg), (4) IR + DGZ (1 mg/kg), and (5) I/R + RSV (10 mg/kg) + DGZ (1 mg/kg). The I/R model was induced with 30 min of left anterior descending occlusion followed by 120 min of reperfusion. Results In vivo pretreatment with RSV and DGZ, respectively, showed a significant reduction of infarction size, a significant increase in the levels of left ventricular systolic pressure, and maximal rate increase in left ventricular pressure (+dp/dtmax), decrease in the levels of left ventricular end-diastolic pressure (LVEDP), maximal rate of decrease of left ventricular pressure (−dp/dtmax) and activity of cardiac enzymes of creatine kinase (CK), creatine kinase MB isoenzymes (CK-MB), and hyper-tensive cardiac troponin I compared with the I/R group. H9C2 cells were exposed to hypoxia/reoxygenation to simulate an I/R model. In vitro administration of 25 µM RSV and 50 µM DGZ significantly enhanced cell viability, upregulated the expression levels of p-PI3K, p-Akt, p-mTOR, and Bcl-2, whereas it downregulated cleaved-caspase3, Bax. TUNEL assay indicated that pretreatment with RSV and DGZ decreased the apoptosis of H9C2 cells. Conclusion The combination of RSV and DGZ significantly enhances the cardioprotective effects compared with RSV or DGZ alone. RSV and DGZ have the potential cardioprotective effects against I/R injury by activating the PI3K/AKt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Lei Gong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China.,The Second Affiliated Hospital of Xuzhou Medical University, No.32 MeiJian Road, Quanshan District, Xuzhou, Jiangsu 221000, China
| | - Xuyang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Jinyu Pan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Mingjun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Dian Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Ming Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| | - Li Li
- The Second Affiliated Hospital of Xuzhou Medical University, No.32 MeiJian Road, Quanshan District, Xuzhou, Jiangsu 221000, China
| | - Fengshuang An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 WenHuaXi Road, Jinan, Shandong 250012, China
| |
Collapse
|
25
|
Hosseini A, Sheikh S, Soukhtanloo M, Malaekeh-Nikouei B, Rajabian A. The Effect of Hydro-alcoholic Extract of Rheum Turkestanicum Roots against Oxidative Stress in Endothelial Cells. Int J Prev Med 2020; 11:122. [PMID: 33088450 PMCID: PMC7554444 DOI: 10.4103/ijpvm.ijpvm_386_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/22/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction: Cardiovascular disorders (CVD) are a common cause of mortality worldwide. Oxidative stress is thought to be a major factor leading to CVD. Anti-oxidants such as medicinal plants may have a role in the mitigation of vascular problems through free radicals scavenging. In this study, we evaluated the protective effects of Rheum turkestanicum against hydrogen peroxide (H2O2)-induced toxicity in endothelial cells (BAE-1). Methods: To evaluate the protective effect of R. turkestanicum against H2O2 toxicity, four groups comprised of control group (the cells without any treatment), H2O2 group (the cells incubated with H2O2 (200 μM)), and treatment groups (the cells treated with R. turkestanicum (12200 μg/ml) alone or 24h before exposure to H2O2). Quercetin (30.23 μg/ml) was used as a bioactive ingredient of the extract. Then the cell viability, reactive oxygen species, lipid peroxidation, and apoptosis were evaluated. Results: H2O2 exposure reduced cell viability to 13.6 ± 1.6%, enhanced ROS generation to 1445 ± 80.7%, lipid peroxidation (LPO, 290 ± 13% of control), and apoptotic cells (P < 0.001). In contrast, compared with H2O2 group, R. turkestanicum and quercetin significantly restored the cell viability to 80.3 ± 1.6 and 87.2 ± 2.1%, ROS formation to 186 ± 10 and 129 ± 1%, as well as LPO to 130.7 ± 7.7 and 116 ± 2.5 of control, respectively (P < 0.001). Therefore, the extract reduced H2O2-induced toxicity in BAE-1 cells by scavenging of free radicals. Conclusion: Our findings demonstrated that the extract might reduce toxicity of endothelial cells by attenuation of oxidative stress, which can be related to the presence of active ingredients including quercetin.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Sheikh
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Wu Y, Liu H, Wang X. Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury. Life Sci 2020; 264:118628. [PMID: 33131670 DOI: 10.1016/j.lfs.2020.118628] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Acute myocardial infarction is associated with high rates of morbidity and mortality and can cause irreversible myocardial damage. Timely reperfusion is critical to limit infarct size and salvage the ischemic myocardium. However, reperfusion may exacerbate lethal tissue injury, a phenomenon known as myocardial ischemia/reperfusion (I/R) injury. Pharmacological postconditioning (PPC), a strategy involving medication administration before or during the early minutes of reperfusion, is more efficient and flexible than preconditioning or ischemic conditioning. Previous studies have shown that various mechanisms are involved in the effects of PPC. In this review, we summarize the relative effects and potential underlying mechanisms of PPC to provide a foundation for future research attempting to develop novel treatments against myocardial I/R injury.
Collapse
Affiliation(s)
- Yushi Wu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
| | - Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China.
| |
Collapse
|
27
|
Uncovering the Molecular Mechanism of the Qiang-Xin 1 Formula on Sepsis-Induced Cardiac Dysfunction Based on Systems Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3815185. [PMID: 32908632 PMCID: PMC7474398 DOI: 10.1155/2020/3815185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/29/2022]
Abstract
Cardiac dysfunction is a critical manifestation of sepsis-induced multiorgan failure and results in the high mortality of sepsis. Our previous study demonstrated that a traditional Chinese medicine formula, Qiang-Xin 1 (QX1), ameliorates cardiac tissue damage in septic mice; however, the underlying pharmacology mechanism remains to be elucidated. The present study was aimed at clarifying the protective mechanism of the QX1 formula on sepsis-induced cardiac dysfunction. The moderate sepsis model of mice was established by cecal ligation and puncture surgery. Treatment with the QX1 formula improved the 7-day survival outcome, attenuated cardiac dysfunction, and ameliorated the disruption of myocardial structure in septic mice. Subsequent systems pharmacology analysis found that 63 bioactive compounds and the related 79 candidate target proteins were screened from the QX1 formula. The network analysis showed that the QX1 active components quercetin, formononetin, kaempferol, taxifolin, cryptotanshinone, and tanshinone IIA had a good binding activity with screened targets. The integrating pathway analysis indicated the calcium, PI3K/AKT, MAPK, and Toll-like receptor signaling pathways may be involved in the protective effect of the QX1 formula on sepsis-induced cardiac dysfunction. Further, experimental validation showed that the QX1 formula inhibited the activity of calcium/calmodulin-dependent protein kinase II (CaMKII), MAPK (P38, ERK1/2, and JNK), and TLR4/NF-κB signaling pathways but promoted the activation of the PI3K/AKT pathway. A cytokine array found that the QX1 formula attenuated sepsis-induced upregulated levels of serum IFN-γ, IL-1β, IL-3, IL-6, IL-17, IL-4, IL-10, and TNF-α. Our data suggested that QX1 may represent a novel therapeutic strategy for sepsis by suppressing the activity of calcium, MAPK, and TLR4/NF-κB pathways, but promoting the activation of AKT, thus controlling cytokine storm and regulating immune balance. The present study demonstrated the multicomponent, multitarget, and multipathway characteristics of the QX1 formula and provided a novel understanding of the QX1 formula in the clinical application on cardiac dysfunction-related diseases.
Collapse
|
28
|
Comprehensive analysis of transcriptomics and metabolomics to understand triptolide-induced liver injury in mice. Toxicol Lett 2020; 333:290-302. [PMID: 32835833 DOI: 10.1016/j.toxlet.2020.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022]
Abstract
Triptolide, a major active component of Triptergium wilfordii Hook. f, is used in the treatment of autoimmune disease. However, triptolide is associated with severe adverse reactions, especially hepatotoxicity, which limits its clinical application. To examine the underlying mechanism of triptolide-induced liver injury, a combination of dose- and time-dependent toxic effects, RNA-seq and metabolomics were employed. Triptolide-induced toxicity occurred in a dose- and time-dependent manners and was characterized by apoptosis and not necroptosis. Transcriptomics profiles of the dose-dependent response to triptolide suggested that PI3K/AKT, MAPK, TNFα and p53 signaling pathways were the vital steps in triptolide-induced hepatocyte apoptosis. Metabolomics further revealed that glycerophospholipid, fatty acid, leukotriene, purine and pyrimidine metabolism were the major metabolic alterations after triptolide exposure. Finally, acylcarnitines were identified as potential biomarkers for the early detection of triptolide-induced liver injury.
Collapse
|
29
|
Protective Effects of Polyphenols against Ischemia/Reperfusion Injury. Molecules 2020; 25:molecules25153469. [PMID: 32751587 PMCID: PMC7435883 DOI: 10.3390/molecules25153469] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality across the world. It manifests as an imbalance between blood demand and blood delivery in the myocardium, which leads to cardiac ischemia and myocardial necrosis. While it is not easy to identify the first pathogenic cause of MI, the consequences are characterized by ischemia, chronic inflammation, and tissue degeneration. A poor MI prognosis is associated with extensive cardiac remodeling. A loss of viable cardiomyocytes is replaced with fibrosis, which reduces heart contractility and heart function. Recent advances have given rise to the concept of natural polyphenols. These bioactive compounds have been studied for their pharmacological properties and have proven successful in the treatment of cardiovascular diseases. Studies have focused on their various bioactivities, such as their antioxidant and anti-inflammatory effects and free radical scavenging. In this review, we summarized the effects and benefits of polyphenols on the cardiovascular injury, particularly on the treatment of myocardial infarction in animal and human studies.
Collapse
|
30
|
Pechanova O, Dayar E, Cebova M. Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System. Molecules 2020; 25:molecules25153322. [PMID: 32707934 PMCID: PMC7435870 DOI: 10.3390/molecules25153322] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies document an increased production of reactive oxygen species (ROS) with a subsequent decrease in nitric oxide (NO) bioavailability in different cardiovascular diseases, including hypertension, atherosclerosis, and heart failure. Many natural polyphenols have been demonstrated to decrease ROS generation and/or to induce the endogenous antioxidant enzymatic defense system. Moreover, different polyphenolic compounds have the ability to increase the activity/expression of endothelial nitric oxide synthase (eNOS) with a subsequent enhancement of NO generation. However, as a result of low absorption and bioavailability of natural polyphenols, the beneficial effects of these substances are very limited. Recent progress in delivering polyphenols to the targeted tissues revealed new possibilities for the use of polymeric nanoparticles in increasing the efficiency and reducing the degradability of natural polyphenols. This review focuses on the effects of different natural polyphenolic substances, especially resveratrol, quercetin, curcumin, and cherry extracts, and their ability to bind to polymeric nanoparticles, and summarizes the effects of polyphenol-loaded nanoparticles, mainly in the cardiovascular system.
Collapse
|
31
|
The Mechanism of Contrast-Induced Acute Kidney Injury and Its Association with Diabetes Mellitus. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:3295176. [PMID: 32788887 PMCID: PMC7330652 DOI: 10.1155/2020/3295176] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the third most common hospital-acquired AKI after AKI induced by renal perfusion insufficiency and nephrotoxic drugs, taking great adverse effects on the prognosis and increasing hospital stay and medical cost. Diabetes nephropathy (DN) is a common chronic complication of DM (diabetes mellitus), and DN is an independent risk factor for chronic kidney disease (CKD) and CI-AKI. The incidence of CI-AKI significantly increases in patients with renal injury, especially in DM-related nephropathy. The etiology of CI-AKI is not fully clear, and research studies on how DM becomes a facilitated factor of CI-AKI are limited. This review describes the mechanism from three aspects. ① Pathophysiological changes of CI-AKI in kidney under high-glucose status (HGS). HGS can enhance the oxidative stress and increase ROS which next causes stronger vessel constriction and insufficient oxygen supply in kidney via vasoactive substances. HGS also aggravates some ion pump load and the latter increases oxygen consumption. CI-AKI and HGS are mutually causal, making the kidney function continue to decline. ② Immunological changes of DM promoting CI-AKI. Some innate immune cells and pattern recognition receptors (PRRs) in DM and/or DN may respond to some damage-associated molecular patterns (DAMPs) formed by CI-AKI. These effects overlap with some pathophysiological changes in hyperglycemia. ③ Signaling pathways related to both CI-AKI and DM. These pathways involved in CI-AKI are closely associated with apoptosis, inflammation, and ROS production, and some studies suggest that these pathways may be potential targets for alleviating CI-AKI. In conclusion, the pathogenesis of CI-AKI and the mechanism of DM as a predisposing factor for CI-AKI, especially signaling pathways, need further investigation to provide new clinical approaches to prevent and treat CI-AKI.
Collapse
|
32
|
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS OMEGA 2020; 5:11849-11872. [PMID: 32478277 PMCID: PMC7254783 DOI: 10.1021/acsomega.0c01818] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 05/03/2023]
Abstract
Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.
Collapse
Affiliation(s)
- Bahare Salehi
- Student
Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Laura Machin
- Institute
of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Lianet Monzote
- Parasitology
Department, Institute of Medicine Tropical
Pedro Kourí, Havana, Cuba
| | - Javad Sharifi-Rad
- Phytochemistry
Research Center, Shahid Beheshti University
of Medical Sciences, Tehran 1991953381, Iran
| | - Shahira M. Ezzat
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, Cairo 11562, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt
| | - Mohamed A. Salem
- Department
of Pharmacognosy, Faculty of Pharmacy, Menoufia
University, Gamal Abd
El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Rana M. Merghany
- Department
of Pharmacognosy, National Research Centre, Giza 12622, Egypt
| | - Nihal M. El Mahdy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Ceyda Sibel Kılıç
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak
University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
| | - Mehdi Sharifi-Rad
- Department
of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - Natália Martins
- Faculty of Medicine, University
of Porto, Porto 4200-319, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy,
and Centre
for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad
de Desarrollo Tecnológico,
UDT, Concepción 4070386, Chile
| | - William C. Cho
- Department
of Clinical Oncology, Queen
Elizabeth Hospital, 30
Gascoigne Road, Kowloon, Hong
Kong
| |
Collapse
|
33
|
Ferenczyova K, Kalocayova B, Bartekova M. Potential Implications of Quercetin and its Derivatives in Cardioprotection. Int J Mol Sci 2020; 21:E1585. [PMID: 32111033 PMCID: PMC7084176 DOI: 10.3390/ijms21051585] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Quercetin (QCT) is a natural polyphenolic compound enriched in human food, mainly in vegetables, fruits and berries. QCT and its main derivatives, such as rhamnetin, rutin, hyperoside, etc., have been documented to possess many beneficial effects in the human body including their positive effects in the cardiovascular system. However, clinical implications of QCT and its derivatives are still rare. In the current paper we provide a complex picture of the most recent knowledge on the effects of QCT and its derivatives in different types of cardiac injury, mainly in ischemia-reperfusion (I/R) injury of the heart, but also in other pathologies such as anthracycline-induced cardiotoxicity or oxidative stress-induced cardiac injury, documented in in vitro and ex vivo, as well as in in vivo experimental models of cardiac injury. Moreover, we focus on cardiac effects of QCT in presence of metabolic comorbidities in addition to cardiovascular disease (CVD). Finally, we provide a short summary of clinical studies focused on cardiac effects of QCT. In general, it seems that QCT and its metabolites exert strong cardioprotective effects in a wide range of experimental models of cardiac injury, likely via their antioxidant, anti-inflammatory and molecular pathways-modulating properties; however, ageing and presence of lifestyle-related comorbidities may confound their beneficial effects in heart disease. On the other hand, due to very limited number of clinical trials focused on cardiac effects of QCT and its derivatives, clinical data are inconclusive. Thus, additional well-designed human studies including a high enough number of patients testing different concentrations of QCT are needed to reveal real therapeutic potential of QCT in CVD. Finally, several negative or controversial effects of QCT in the heart have been reported, and this should be also taken into consideration in QCT-based approaches aimed to treat CVD in humans.
Collapse
Affiliation(s)
- Kristina Ferenczyova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
- Institute of Physiology, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| |
Collapse
|
34
|
Licorice Extracts Attenuate Nephrotoxicity Induced by Brucine Through Suppression of Mitochondria Apoptotic Pathway and STAT3 Activation. Curr Med Sci 2019; 39:890-898. [DOI: 10.1007/s11596-019-2126-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/06/2019] [Indexed: 02/07/2023]
|
35
|
Alyahya AM, Al-Masri A, Hersi A, El Eter E, Husain S, Lateef R, Mawlana OH. The Effects of Progranulin in a Rat Model of Acute Myocardial Ischemia/Reperfusion are Mediated by Activation of the P13K/Akt Signaling Pathway. Med Sci Monit Basic Res 2019; 25:229-237. [PMID: 31695019 PMCID: PMC6859783 DOI: 10.12659/msmbr.916258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Progranulin is an adipokine, encoded by the progranulin (GRN) gene. Progranulin is expressed in atherosclerosis, but its effects in cardiac ischemia and reperfusion injury are unknown. Therefore, this study aimed to investigate the effects of progranulin in a rat model of acute myocardial ischemia/reperfusion (MI/R) injury in vivo. Material/Methods The model of acute MI/R injury was established in male Wistar rats by ligation of the left anterior descending (LAD) coronary artery for 30 minutes and reperfusion for 60 minutes. Before modeling, one group was treated with progranulin (0.03 μg/kg), and one group was treated with the P13K/Akt inhibitor, LY294002 (3 mg/kg). Left ventricular function (LV) was monitored, including the LV systolic pressure (LVSP), LV end-diastolic pressure (LVEDP), and changes in LV pressure. At the end of the study, blood and myocardial tissue were examined. Cardiac biochemical markers, histopathology, gene expression, and apoptosis were analyzed. Results Progranulin improved cardiac function following acute MI/R injury and significantly improved recovery of cardiac contractility and LVSP. Progranulin significantly reduced myocyte apoptosis, inflammation, and tissue edema, and was highly expressed in cardiac tissue following MI/R injury. The cardioprotective effect of progranulin was reduced by blocking the P13K/Akt signaling pathway. Conclusions In the rat model of acute MI/R injury, progranulin had a protective effect on cardiac function and morphology, associated with activation of the P13K/Akt signaling pathway. The mechanisms of the anti-apoptotic, anti-inflammatory, and inotropic effects of progranulin in the setting of acute MI/R injury require further in vivo studies.
Collapse
Affiliation(s)
- Asma Mohammed Alyahya
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Hersi
- Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Cardiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eman El Eter
- Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Physiology, College of Medicine, Alexandria University, Alexandria, Egypt
| | - Sufia Husain
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rahmatunnesa Lateef
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ola H Mawlana
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Wei D, Xu H, Gai X, Jiang Y. Astragaloside IV alleviates myocardial ischemia-reperfusion injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways. Acta Cir Bras 2019; 34:e201900708. [PMID: 31531541 PMCID: PMC6746565 DOI: 10.1590/s0102-865020190070000008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/23/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: To investigate the effect of astragaloside IV (As-IV) on myocardial ischemia-reperfusion (I/R) injury in rats and reltaed mechanisms. Methods: Sixty rats were randomly divided into sham-operated, control I/R and 2.5, 5 and 10 mg/kg As-IV groups, 12 rats in each group. The later three groups were intragastrically administered with As-IV for 7 days, with a dose of 2.5, 5 and 10 mg/kg, respectively. The myocardial I/R injury model was constructed in later four groups. At the end of reperfusion, the cardiac function indexes, serum lactate dehydrogenase (LDH) and creatine kinase (CK) levels, heart weight (HW)/body weight (BW) ratio and infarct size, and expressions of phosphatidylinositol-3 kinase/serine-threonine protein kinase (PI3K/AKT) and glycogen synthase kinase-3β (GSK-3β) proteins and the phosphorylated forms (p-AKT, p-GSK-3β) were determined. Results: Compared with control I/R group, in 5 and 10 mg/kg As-IV groups the left ventricular systolic pressure, fractional shortening and ejection fraction were increased, the left ventricular end-diastolic pressure was decreased, the serum LDH and CK levels were decreased, the HW/BW ratio and myocardial infarct size were decreased, and the p-Akt/Akt ratio and p-GSK-3β/GSK-3β ratio were increased (all P < 0.05). Conclusion: As-IV can alleviate the myocardial I/R injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways.
Collapse
Affiliation(s)
- Dajun Wei
- MD, Department of Cardiology, Affiliated Hospital, Beihua University, P.R. China. Technical procedures, acquisition of data, final approval
| | - Hongjie Xu
- Master, Department of Oncology, Affiliated Hospital, Beihua University, P.R. China. Design of the study, critical revision, final approval
| | - Xiaodong Gai
- PhD, School of Medical Science, Beihua University, P.R. China. Statistics analysis, final approval
| | - Ying Jiang
- Master, Health Service Center of Wenmiao Community, Changyi District, P.R. China. Manuscript writing, final approval
| |
Collapse
|
37
|
Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons. Mol Cell Neurosci 2019; 96:10-24. [PMID: 30776416 DOI: 10.1016/j.mcn.2019.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023] Open
Abstract
Cerebral blood flow disturbances lead to the massive death of brain cells. The death of >80% of cells is observed in hippocampal cell cultures after 40 min of oxygen and glucose deprivation (ischemia-like conditions, OGD). However, there are some populations of GABAergic neurons which are characterized by increased vulnerability to oxygen-glucose deprivation conditions. Using fluorescent microscopy, immunocytochemical assay, vitality tests and PCR-analysis, we have shown that population of GABAergic neurons are characterized by a different (faster) Ca2+ dynamics in response to OGD and increased basal ROS production under OGD conditions. A plant flavonoid taxifolin inhibited an excessive ROS production and an irreversible cytosolic Ca2+ concentration increase in GABAergic neurons, preventing the death of these neurons and further excitation of a neuronal network; neuroprotective effect of taxifolin increased after incubation of 24 h and correlated with increased expression of antiapoptocic and antioxidant genes Stat3 Nrf-2 Bcl-2, Bcl-xL, Ikk2, and genes coding for AMPA and kainate receptor subunits; in addition, taxifolin decreased expression of prooxidant enzyme NOS and proinflammatory cytokine IL-1β.
Collapse
|
38
|
Renoprotective effects of dexmedetomidine against ischemia-reperfusion injury in streptozotocin-induced diabetic rats. PLoS One 2018; 13:e0198307. [PMID: 30114208 PMCID: PMC6095484 DOI: 10.1371/journal.pone.0198307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Diabetic patients are susceptible to renal ischemia-reperfusion injury, which leads to perioperative complications. Activation of NOD-like receptor protein 3 (NLRP3) inflammasome participates in the development of diabetes, and contributes to renal ischemia-reperfusion injury. Dexmedetomidine (DEX), a highly selective α2-adrenoreceptor agonist, shows renoprotective effects against ischemia-reperfusion injury. We aimed to elucidate the effects, underlying mechanisms, and optimal timing of DEX treatment in diabetic rats. Methods Male Sprague-Dawley rats (n = 12 per group) were randomly divided into normal-sham, diabetes-sham, diabetes-ischemia-reperfusion-control, diabetes-ischemia-reperfusion-DEX-pre-treatment, and diabetes-ischemia-reperfusion-DEX-post-treatment groups. Renal ischemia-reperfusion injury was induced in diabetic rats by occlusion of both renal arteries for 45 min, followed by reperfusion for 24 h. DEX (10 μg/kg) was administered intraperitoneally 1 h before ischemia (pre-treatment) or upon reperfusion (post-treatment). After reperfusion, renal tissue was biochemically and histopathologically evaluated. Results DEX treatment attenuated ischemia reperfusion-induced increase in NLRP3, caspase-1, IL-1β, phospho-AKT, and phospho-ERK signaling. Moreover, oxidative stress injury, inflammatory reactions, apoptosis, and renal tubular damage were favorably modulated by DEX treatment. Furthermore, post-reperfusion treatment with DEX was significantly more effective than pre-treatment in modulating NLRP3 inflammasome, AKT and ERK signaling, and oxidative stress. Conclusions This study shows that the protective effects of DEX in renal ischemia-reperfusion injury are preserved in diabetic conditions and may potentially provide a basis for the use of DEX in clinical treatment of renal ischemia-reperfusion injury.
Collapse
|
39
|
Effects of Post Ischemia-Reperfusion Treatment with Trimetazidine on Renal Injury in Rats: Insights on Delayed Renal Fibrosis Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1072805. [PMID: 30057668 PMCID: PMC6051050 DOI: 10.1155/2018/1072805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
Even after recovery from acute kidney injury, glomeruli remain vulnerable to further injury by way of interstitial fibrosis. This study is aimed at elucidating the effects of post ischemia-reperfusion (I/R) treatment with trimetazidine on the progression to renal fibrosis as well as short- and intermediate-term aspects. Trimetazidine 3 mg/kg or 0.9% saline was given intraperitoneally once upon reperfusion or daily thereafter for 5 d or 8 w. Renal histologic changes and related signaling proteins were assessed. After 24 h, post I/R treatment with trimetazidine significantly reduced serum blood urea nitrogen and creatinine levels and tubular injury accompanied with upregulation of hypoxia-inducible factor- (HIF-) 1α, vascular endothelial growth factor (VEGF), and Bcl-2 expression. After 5 d, post I/R treatment with trimetazidine reduced renal tubular cell necrosis and apoptosis with upregulation of HIF-1α-VEGF and tissue inhibitors of metalloproteinase activities, attenuation of matrix metalloproteinase activities, and alteration of the ratio of Bax to Bcl-2 levels. After 8 w, however, post I/R treatment with trimetazidine did not modify the progression of renal fibrosis. In conclusion, post I/R treatment with trimetazidine allows ischemic kidneys to regain renal function and structure more rapidly compared to nontreated kidneys, but not enough to resolute renal fibrosis in long-term aspect.
Collapse
|
40
|
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 2018; 155:889-904. [PMID: 29966915 DOI: 10.1016/j.ejmech.2018.06.053] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Flavonoids are integral components of various vegetation and in foods; consequently, they represent an inevitable part of the diet. Historical and epidemiological proof recommend that diet plans consisting of flavonoids such as quercetin have positive health benefits, especially on the heart. Flavonoids have been proven to be active against hypertension, inflammation, diabetes and vascular diseases. Quercetin exhibits significant heart related benefits as inhibition of LDL oxidation, endothelium-independent vasodilator effects, reduction of adhesion molecules and other inflammatory markers, the protective effect on nitric oxide and endothelial function under conditions of oxidative stress, prevention of neuronal oxidative and inflammatory damage and platelet antiaggregant effects. Searching for experimental evidence to validate the cardioprotective effects of quercetin, we review here the recent detailed in vivo studies. Quercetin and its derivatives lead to an enhancement in heart features, indicating the prospective for quercetin to be used therapeutically in the treatment of cardiac diseases. Several evidence-based studies suggest mechanisms to observe cardiovascular diseases such as aging effects, hypertension, angiotensin-converting enzyme activity and endothelial-dependent and independent functions. Different animal models including human are also used to elucidate the in vivo role of quercetin in cardiovascular diseases. The role of quercetin and its derivatives may go beyond their existence in food and has potential as a lead molecule in drug development programs.
Collapse
Affiliation(s)
- Rahul V Patel
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyenggi-do, 410820, Republic of Korea.
| | - Bhupendra M Mistry
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyenggi-do, 410820, Republic of Korea
| | - Surendra K Shinde
- College of Life Science and Biotechnology, Department of Biological and Environmental Science, Dongguk University, 32, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-820, Republic of Korea
| | - Riyaz Syed
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, 500 085, India
| | - Vijay Singh
- Department of Chemical Engineering, Konkuk University, Seoul, 143 701, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyenggi-do, 410820, Republic of Korea.
| |
Collapse
|
41
|
Gholampour F, Sadidi Z. Hepatorenal protection during renal ischemia by quercetin and remote ischemic perconditioning. J Surg Res 2018; 231:224-233. [PMID: 30278933 DOI: 10.1016/j.jss.2018.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/15/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pathogenesis of renal ischemia/reperfusion injury (IRI) involves oxidative stress response in the kidney and remote organs. Both quercetin and remote ischemic perconditioning (RIPerC) can protect partially against IRI. This study determined whether combined quercetin and RIPerC could provide an augmented hepatorenal protection against renal IRI. MATERIALS AND METHODS I/R was induced by clamping renal arteries for 45 min followed by 24-h reperfusion. RIPerC consisted of four cycles of 2 min of left femoral artery ischemia followed by 3 min of reperfusion administered at the beginning of renal ischemia. Rats were divided into five groups: sham, I/R, RIPerC, quercetin (Q + I/R), and combined quercetin and RIPerC (Q + RIPerC). At the end of reperfusion period, blood, urine, and tissue samples were collected. RESULTS I/R caused kidney dysfunction, as proved by significant decrease in creatinine clearance, and a significant increase in liver functional indicators as evidenced by increased plasma alanine aminotransferase and aspartate aminotransferase activity. This was accompanied by a decrease of glutathione peroxidase and catalase activities with an increase of malondialdehyde levels and histological damages in renal and hepatic tissues. Treatment with RIPerC and quercetin reduced all these changes. However, the measure of improvements was enhanced by combined quercetin and RIPerC treatment. CONCLUSIONS This study demonstrated protective effects of quercetin and RIPerC strategy on the both kidney and liver after renal I/R. The results suggest that combined quercetin and RIPerC provides an enhanced protection against renal IRI by reduction of lipid peroxidation and augmentation of antioxidant systems.
Collapse
Affiliation(s)
- Firouzeh Gholampour
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Zahra Sadidi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
42
|
The Antimalarial Drug Artesunate Attenuates Cardiac Injury in A Rodent Model of Myocardial Infarction. Shock 2018; 49:675-681. [DOI: 10.1097/shk.0000000000000963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Hao YL, Fang HC, Zhao HL, Li XL, Luo Y, Wu BQ, Fu MJ, Liu W, Liang JJ, Chen XH. The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway. Am J Physiol Cell Physiol 2018; 315:C380-C388. [PMID: 29741915 DOI: 10.1152/ajpcell.00310.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have uncovered the vital roles played by microRNAs in regulating cardiac injury. Among them, the cardiac enriched microRNA-1 (miR-1) has been extensively studied and proven to be detrimental to cardiac myocytes. Hence, the current study aimed to explore whether miR-1 affects myocardial ischemia-reperfusion injury (MIRI) in rats undergoing sevoflurane preconditioning and the underlying mechanism. After successful model establishment, rats with MIRI were transfected with mimics or inhibitors of miR-1, or siRNA against MAPK3, and then were injected with sevoflurane. A luciferase reporter gene assay was conducted to evaluate the targeting relationship between miR-1 and MAPK3. Reverse transcription quantitative polymerase chain reaction and Western blot analysis were employed to evaluate the expressions of miR-1, MAPK3, phosphatidylinositol 3-kinase (PI3K), and Akt. Additionally, the concentration of lactate dehydrogenase (LDH) was determined. Cell apoptosis and viability were assessed using TUNEL and cell counting kit-8 assays, and the ischemic area at risk and infarct size were detected using Evans blue and triphenyltetrazolium chloride staining. MAPK3 was found to be the target gene of miR-1. miR-1 expressed at a high level whereas MAPK3 expressed at a low level in MIRI rats. Overexpressing miR-1 or silencing MAPK3 blocked the PI3K/Akt pathway to increase cell apoptosis, ischemic area at risk, and infarct area but decreased cell viability and increased LDH concentration. In contrast, miR-1 downregulation abrogated the effects induced by miR-1 mimics or siRNA against MAPK3. These findings indicate that inhibition of miR-1 promotes MAPK3 to protect against MIRI in rats undergoing sevoflurane preconditioning through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yun-Ling Hao
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Hong-Cheng Fang
- Shenzhen Baoan Shajing People's Hospital of Guangzhou Medical University , Shenzhen , People's Republic of China
| | - Hong-Lei Zhao
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Xiao-Li Li
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Ying Luo
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Bao-Quan Wu
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Ming-Jie Fu
- Beijing Anzhen Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Wei Liu
- Beijing Anzhen Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Jin-Jie Liang
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Xie-Hui Chen
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| |
Collapse
|
44
|
Zhu B, Wang X, Teng J. Retracted Article: Salvianolic acid B inhibits inflammatory response and cell apoptosis via the PI3K/Akt signaling pathway in IL-1β-induced osteoarthritis chondrocytes. RSC Adv 2018; 8:36422-36429. [PMID: 35558917 PMCID: PMC9088849 DOI: 10.1039/c8ra02418a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/12/2018] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease among late middle-aged or elderly people. The pathological process of OA mainly involves the degeneration of cartilage tissue and deficiency of joint function. Salvianolic acid B (Sal B) is the main active ingredient of Salvia miltiorrhiza Bge, which possesses anti-inflammatory, anti apoptotic and other pharmacological activities. In this study, primary chondrocytes were cultured to investigate the effects of Sal B on the inflammatory response and apoptosis of OA induced by IL-1β, and to explore the possible mechanism. First, we determined the cytotoxicity of Sal B; the results showed that the cell activity of chondrocytes was not influenced by Sal B when the concentration was below 150 μM. Moreover, Sal B (40 and 80 μM) suppressed the expression of iNOS in OA chondrocytes induced by IL-1β, and restrained the secretion of NO, IL-6, IL-17 and TNF-α in chondrocytes obviously. Sal B (40, 80 μM) significantly alleviated the inhibitory effect of cell activity stimulated by IL-1β and up-regulated the expression of Col II and reduced the expression of Col X. Besides, Sal B down-regulated the expression level of Bax and promoted the expression of Bcl-2, showed a significant effect on promoting proliferation and inhibiting cell apoptosis. In addition, we found that IL-1β significantly reduced the ratio of p-PI3K/PI3K, p-Akt/Akt induced the nuclear translocation of AKT and inhibited the activation of the PI3K/Akt signaling pathway. Finally, the PI3K inhibitor, LY-294002, was added in IL-1β-induced chondrocytes. The results suggest that Sal B ameliorates IL-1β induced inflammation and suppresses apoptosis in OA by activating the PI3K/Akt signaling pathway. Our study reveals the mechanism of Sal B acts on OA and may provide a basis for the treatment of OA with Sal B. Osteoarthritis (OA) is the most common joint disease among late middle-aged or elderly people.![]()
Collapse
Affiliation(s)
- Bin Zhu
- Department of Orthopedics
- Baodi Clinical College of Tianjin Medical University
- Tianjin
- China
| | - Xuejian Wang
- Department of Orthopedics
- Baodi Clinical College of Tianjin Medical University
- Tianjin
- China
| | - Jiawen Teng
- Department of Orthopedics
- Affiliated Hospital of Shandong Traditional Chinese Medicine University
- Jinan
- PR China
| |
Collapse
|
45
|
Soh S, Jun JH, Song JW, Shin EJ, Kwak YL, Shim JK. Ethyl pyruvate attenuates myocardial ischemia-reperfusion injury exacerbated by hyperglycemia via retained inhibitory effect on HMGB1. Int J Cardiol 2017; 252:156-162. [PMID: 29169909 DOI: 10.1016/j.ijcard.2017.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hyperglycemia (HG) exacerbates myocardial ischemia/reperfusion (I/R) injury and renders protective strategies ineffective by amplified inflammatory response via enhanced high-mobility group box-1 (HMGB1) release. This study investigated the role of ethyl pyruvate (EP) against myocardial I/R injury under a clinically relevant HG condition. METHODS Sprague-Dawley rats (n=76) were randomly assigned to 6 groups: normoglycemia (NG)-Sham, NG-I/R-control (C, saline), NG-I/R-EP treatment (50mg/kg) upon reperfusion, HG-Sham, HG-I/R-C, and HG-I/R-EP treatment upon reperfusion. HG was induced by 1.2g/kg dextrose. I/R was induced by ligation of the left anterior descending artery for 30min followed by 4h of reperfusion. RESULTS HG resulted in exacerbation of myocardial infarct size by 19% with amplified activation of HMGB1-receptors of advanced glycation end products/toll like receptors-NF-κB pathway compared to NG following I/R, which all could be attenuated by EP. EP treatment was associated with diminished tumor necrosis factor-α, interleukin-1β, and interleukin-6 expressions. It also served to normalize the increase in pro-apoptotic Bax and the decrease in anti-apoptotic Bcl-2 protein levels. These effects were associated with decreased myocardial apoptosis and infarct size (by 30% and 36% in the NG and HG groups, respectively) regardless of the glycemic condition. CONCLUSION HG exacerbated myocardial I/R injury through amplified inflammatory response via increased HMGB1 level. EP treatment upon reperfusion conveyed significant myocardial protection against the I/R injury under both NG and HG conditions. Common to both glycemic conditions, associated mechanisms involved attenuated increase in HMGB1 level and suppression of its down-stream pathways.
Collapse
Affiliation(s)
- Sarah Soh
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Severance Cardiovascular Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Ji Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Severance Cardiovascular Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Eun-Jung Shin
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Severance Cardiovascular Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Severance Cardiovascular Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Jun JH, Song JW, Shin EJ, Kwak YL, Choi N, Shim JK. Ethyl pyruvate is renoprotective against ischemia-reperfusion injury under hyperglycemia. J Thorac Cardiovasc Surg 2017; 155:1650-1658. [PMID: 29195627 DOI: 10.1016/j.jtcvs.2017.10.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hyperglycemia (HG) is common in cardiovascular surgeries due to diabetes, inflammation, and the neuroendocrine stress response. HG aggravates renal ischemia-reperfusion (I/R) injury through an increased inflammatory response, and blunts the protective effect of various measures. Ethyl pyruvate (EP) provides anti-inflammatory effects against I/R injury via inhibition of high-mobility group box 1 protein (HMGB1) release. This study aimed to determine the renoprotective effect of EP against I/R injury under HG. METHODS Sprague-Dawley rats were randomly assigned at random to 8 groups: normoglycemia (NG)-sham, NG-I/R-control, NG-EP-I/R (pretreatment), NG-I/R-EP (posttreatment), HG-sham, HG-I/R-control, HG-EP-I/R, and HG-I/R-EP. Renal I/R was induced by 45 minutes of ischemia (clamping of renal arteries), followed by 24 hours of reperfusion. EP (50 mg/kg) was administered intraperitoneally at 1 h before ischemia (pretreatment) or on reperfusion (posttreatment). RESULTS I/R injury under HG significantly aggravated the degree of renal tubular apoptosis and damage compared with the NG groups, which could be attenuated by both pretreatment and posttreatment of EP. I/R-induced increases in HMGB1 and Toll-like receptors (TLRs), activation of NF-kB, and resultant alterations in interleukin-1β, tumor necrosis factor-α, proapoptotic Bax, and antiapoptotic Bcl-2 were all favorably modulated by EP treatment in both the NG and HG groups compared with their corresponding control groups. CONCLUSIONS Despite aggravation of renal I/R injury by HG through amplified inflammation, EP administration showed similar suppression of the HMGB1-TLR-NF-kB pathway in the HG and NG groups. EP retained anti-inflammatory, antiapoptotic, and renoprotective effects in the HG groups, whether administered before ischemia or on reperfusion.
Collapse
Affiliation(s)
- Ji Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Wook Song
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun-Jung Shin
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nakcheol Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Wong ZW, Thanikachalam PV, Ramamurthy S. Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: A review. Biomed Pharmacother 2017; 94:1145-1166. [PMID: 28826162 DOI: 10.1016/j.biopha.2017.08.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/09/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Modern medicine has been used to treat myocardial infarction, a subset of cardiovascular diseases, and have been relatively effective but not without adverse effects. Consequently, this issue has stimulated interest in the use of natural products, which may be equally effective and better tolerated. Many studies have investigated the cardioprotective effect of natural products, such as plant-derived phytochemicals, against isoproterenol (ISO)-induced myocardial damage; these have produced promising results on the basis of their antioxidant, anti-atherosclerotic, anti-apoptotic and anti-inflammatory activities. This review briefly introduces the pathophysiology of myocardial infarction (MI) and then addresses the progress of natural product research towards its treatment. We highlight the promising applications and mechanisms of action of plant extracts, phytochemicals and polyherbal formulations towards the treatment of ISO-induced myocardial damage. Most of the products displayed elevated antioxidant levels with decreased oxidative stress and lipid peroxidation, along with restoration of ionic balance and lowered expression of myocardial injury markers, pro-inflammatory cytokines, and apoptotic parameters. Likewise, lipid profiles were positively altered and histopathological improvements could be seen from, for example, the better membrane integrity, decreased necrosis, edema, infarct size, and leukocyte infiltration. This review highlights promising results towards the amelioration of ISO-induced myocardial damage, which suggest the direction for future research on natural products that could be used to treat MI.
Collapse
Affiliation(s)
- Zheng Wei Wong
- International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | | | - Srinivasan Ramamurthy
- International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Wilayah Persekutuan, Kuala Lumpur, Malaysia.
| |
Collapse
|
48
|
Li W, Li Y, Sun R, Zhou S, Li M, Feng M, Xie Y. Dual character of flavonoids in attenuating and aggravating ischemia-reperfusion-induced myocardial injury. Exp Ther Med 2017; 14:1307-1314. [PMID: 28810591 PMCID: PMC5525640 DOI: 10.3892/etm.2017.4670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/03/2017] [Indexed: 01/21/2023] Open
Abstract
The concept that flavonoids exert cardioprotection against myocardial ischemia-reperfusion (I/R) injury has been acknowledged by a large body of evidence. However, recent studies reported cardiotoxic effects of certain flavonoids, while the underlying mechanisms have remained largely elusive. Flavonoids have been demonstrated to activate aryl hydrocarbon receptor (Ahr), which is implicated in an array of cell signaling processes. The present study examined the cardioprotective roles of quercetin (Qu) and β-naphthoflavone (β-NF) against I/R injury and explored whether the underlying mechanism proceeds via molecular signaling downstream of Ahr. An oxygen glucose deprivation/reoxygenation (OGD/R) model of I/R was established in myocardial H9c2 cells in the absence or presence of Qu or β-NF. Qu as well as β-NF reversed OGD/R-induced overproduction of reactive oxygen species by increasing the anti-oxidative capacity of the cells and protected them from lethal injury, as demonstrated by a decreased cell death rate, lactate hydrogenase leakage and caspase-3 activity as determined by flow cytometry, colorimetric assay and western blot analysis, respectively. Immunocytochemistry, co-immunoprecipitation and western blot assays collectively revealed that Qu and β-NF engendered the translocation of Ahr from the cytoplasm into the cell nucleus, where binding of Ahr with the Ahr nuclear translocator (ARNT) blocked its binding to hypoxia-inducible factor (HIF)-1α, which inhibited the cardioprotection of HIF-1α, including the induction of nitric oxide (NO) and inhibition of vascular endothelial growth factor (VEGF) production. Ahr knockdown recovered the binding of ARNT to HIF-1α and the generation of NO and VEGF. The results of the present study suggested a dual character of Qu and β-NF in the process of myocardial I/R.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China.,Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yun Li
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ruifang Sun
- Department of Joint Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Sumei Zhou
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Meifeng Li
- Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Mingchen Feng
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yingguang Xie
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
49
|
Ma ZG, Xia HQ, Cui SL, Yu J. Attenuation of renal ischemic reperfusion injury by salvianolic acid B via suppressing oxidative stress and inflammation through PI3K/Akt signaling pathway. ACTA ACUST UNITED AC 2017; 50:e5954. [PMID: 28513773 PMCID: PMC5479385 DOI: 10.1590/1414-431x20175954] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
Salvianolic acid B (SAB) is one the major phytocomponents of Radix Salvia miltiorrhiza and exhibit numerous health promoting properties. The objective of the current study was to examine whether SAB exerts a renoprotective effect by attenuating oxidative stress and inflammatory response through activating phosphatidylinositol 3-kinase/serine-threonine kinase B (PI3K/Akt) signaling pathway in a renal ischemic reperfusion rat model. Forty Sprague-Dawley male rats (250–300 g) were obtained and split into four groups with ten rats in each group. The right kidney of all rats was removed (nephrectomy). The rats of the Control group received only saline (occlusion) and served as a sham control group, whereas rats subjected to ischemic reperfusion (IR) insult by clamping the left renal artery served as a postitive control group. The other 2 groups of rats were pretreated with SAB (20 and 40 mg·kg-1·day-1) for 7 days prior IR induction and served as treatment groups (SAB 20+IR; SAB 40+IR). Renal markers creatinine (Cr) and blood urea nitrogen (BUN) were significantly lower in the groups that received SAB. Pretreatment with SAB appears to attenuate oxidative stress by suppressing the production of lipid peroxidation products like malondialdehyde as well as elevating antioxidant activity. The concentration of inflammatory markers and neutrophil infiltration (myeloperoxidase) were significantly decreased. Meanwhile, PI3K protein expression and pAkt/Akt ratio were significantly upregulated upon supplementation with SAB, indicating its renoprotective activity. Taken together, these results indicate that SAB can therapeutically alleviate oxidative stress and inflammatory process via modulating PI3K/Akt signaling pathway and probably ameliorate renal function and thus act as a renoprotective agent.
Collapse
Affiliation(s)
- Z G Ma
- Department of Critical Care Medicine, Laiwu Steel Group Hospital, Laiwu City, Shandong, China
| | - H Q Xia
- Department of Critical Care Medicine, Laiwu Steel Group Hospital, Laiwu City, Shandong, China
| | - S L Cui
- Department of Renal Rheumatology, Laiwu Steel Group Hospital, Laiwu City, Shandong, China
| | - J Yu
- Department of Internal Medicine, Laiwu Steel Group Hospital, Laiwu City, Shandong, China
| |
Collapse
|
50
|
Chi KK, Zhang WH, Chen Z, Cui Y, He W, Wang SG, Zhang C, Chen J, Wang GC. Comparison of quercetin and resveratrol in the prevention of injury due to testicular torsion/detorsion in rats. Asian J Androl 2017; 18:908-912. [PMID: 26620457 PMCID: PMC5109887 DOI: 10.4103/1008-682x.167720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Quercetin (QE) and resveratrol (RSV) are powerful antioxidants with the potential to protect the testes against ischemia/reperfusion (I/R) injury. We compared their effects in testicular torsion/detorsion (T/D) in adult rats. Twenty-four male Wistar rats were divided into four groups: sham (group A), T/D (group B), T/D treated with QE (group C), and T/D treated with RSV (group D). QE (20 mg kg−1) and RSV (20 mg kg−1) were injected intra-peritoneally at 60 min of torsion. After 90 min of surgically induced torsion, the testicular cord was restored to its anatomical position. Twenty-four hour after torsion, blood and tissue samples were obtained for further examination. Testicular tissue malondialdehyde (MDA) and nitric oxide (NO) levels and serum total oxidant status (TOS) were higher in group B than in group A (P < 0.05). Group A had higher serum total antioxidant status (TAS) than group B. (P < 0.05) QE and RSV significantly lowered MDA, NO, and TOS levels and TAS consumption (P < 0.05). QE reduced the MDA and TOS levels more than RSV (P < 0.05), but their effects on NO reduction and TAS consumption were similar (P > 0.05). Group A had normal testicular architecture (grade 1). Groups C (mean grade 2.60) and D (mean grade 3.00) had lower testicular injury grades than group B (mean grade 3.45) (P < 0.05). Group C had lower testicular injury grade than group D (P < 0.05). Treatment with QE and RSV protects against I/R injury after testicular T/D. QE may exhibit better function than RSV at the doses tested in this study.
Collapse
Affiliation(s)
- Kai-Kai Chi
- Department of Urology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Wen-Hui Zhang
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou 450002, Henan, China
| | - Zhu Chen
- Department of Urology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Yong Cui
- Department of Urology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Wei He
- Department of Urology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Suo-Gang Wang
- Department of Urology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Chan Zhang
- Department of Urology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Jie Chen
- Department of Urology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Guang-Ce Wang
- Department of Urology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| |
Collapse
|