1
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Li JG, Ding Y, Huang YM, Chen WL, Pan LL, Li Y, Chen XL, Chen Y, Wang SY, Wu XN. FAMLF is a target of miR-181b in Burkitt lymphoma. ACTA ACUST UNITED AC 2017; 50:e5661. [PMID: 28492808 PMCID: PMC5441277 DOI: 10.1590/1414-431x20175661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Burkitt lymphoma (BL) is a highly malignant non-Hodgkin's lymphoma that is closely
related to the abnormal expression of genes. Familial acute myelogenous leukemia
related factor (FAMLF; GenBank accession No. EF413001.1) is a novel
gene that was cloned by our research group, and miR-181b is located in the intron of
the FAMLF gene. To verify the role of miR-181b and
FAMLF in BL, RNAhybrid software was used to predict target site
of miR-181b on FAMLF and real-time quantitative PCR (RQ-PCR) was
used to detect expression of miR-181b and FAMLF in BL patients, Raji
cells and unaffected individuals. miR-181b was then transfected into Raji and CA46
cell lines and FAMLF expression was examined by RQ-PCR and western
blotting. Further, Raji cells viability and proliferation were detected by MTT and
clone formation, and Raji cell cycle and apoptosis were detected by flow cytometry.
The results showed that miR-181b can bind to bases 21–42 of the
FAMLF 5′ untranslated region (UTR), FAMLF was
highly expressed and miR-181b was lowly expressed in BL patients compared with
unaffected individuals. FAMLF expression was significantly and
inversely correlated to miR-181b expression, and miR-181b negatively regulated
FAMLF at posttranscriptional and translational levels. A
dual-luciferase reporter gene assay identified that the 5′ UTR of
FAMLF mRNA contained putative binding sites for miR-181b.
Down-regulation of FAMLF by miR-181b arrested cell cycle, inhibited
cell viability and proliferation in a BL cell line model. Our findings explain a new
mechanism of BL pathogenesis and may also have implications in the therapy of
FAMLF-overexpressing BL.
Collapse
Affiliation(s)
- J G Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Y Ding
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Y M Huang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - W L Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - L L Pan
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Y Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - X L Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Y Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - S Y Wang
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - X N Wu
- School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|