1
|
Camargo CP, Guido MC, Tavares ER, Carvalho PO, Gemperli R, Maranhão RC. Methotrexate-Loaded solid lipid nanoparticles enhance the viability of cutaneous flaps: potential for surgical wound healing. J Drug Target 2024:1-9. [PMID: 39445642 DOI: 10.1080/1061186x.2024.2409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Skin flaps are employed to cover cutaneous denuded surfaces, but ensuing flap necrosis often occurs. Previously, rats with myocardial infarction treated with lipid-core nanoparticles (LDE) loaded with methotrexate (MTX) improved myocardial irrigation and reduced necrosis. Here, the aim was to investigate the efficacy of LDE-MTX to preserve the viability of cutaneous flaps and its implications for surgical wound healing. Twenty-eight male rats were divided into 4 groups: (1) LDE, injected intraperitoneally with LDE only; (2) MTX (1 mg/Kg commercial MTX): (3) LDE-MTX (1 mg/Kg MTX associated with LDE), and controls without treatment. LDE, MTX or LDE-MTX were repeated after 2 days. Then, flap surgery (9x3cm) was performed on the dorsal region. Injections were continued every other day until day 7 when animals were euthanized. LDE-MTX treatment improved the total viable area of the flaps with a fourfold increase in blood flow and reduced inflammatory cell number (p < 0.001), accompanied by decreased protein expression of pro-inflammatory factors. SOD-1 was higher in LDE-MTX-treated rats (p < 0.05). In conclusion, LDE-MTX treatment achieved total viability of cutaneous flaps, with increased irrigation and diminished local inflammation. LDE-MTX may offer efficient and cost-effective prevention of cutaneous flaps and treatment for wounds from surgical procedures to be tested in future clinical studies.
Collapse
Affiliation(s)
- Cristina Pires Camargo
- Laboratory of Microsurgery and Plastic Surgery, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Carolina Guido
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elaine Rufo Tavares
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Priscila Oliveira Carvalho
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rolf Gemperli
- Laboratory of Microsurgery and Plastic Surgery, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raul Cavalcante Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Jiang H, Zhao Q, Ye X. Application of nanomaterials in heart transplantation: a narrative review. J Thorac Dis 2024; 16:3389-3405. [PMID: 38883645 PMCID: PMC11170395 DOI: 10.21037/jtd-23-1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/15/2024] [Indexed: 06/18/2024]
Abstract
Background and Objective Heart transplantation (HT) is a therapeutic option for end-stage heart disease. Still, it faces many challenges, especially the shortage of donor sources and the poor durability of grafts, which are the two critical issues. In this review, we generalize the application of existing nanomedicine technologies in donor management as well as prevention and diagnosis of post-transplantation complications, also including the current preclinical studies of nanomaterials in cardiac tissue engineering and gene-editing xeno-donor grafts. Finally, we discuss the remaining problems and future directions of nanomaterials in the field of HT. Methods A narrative review using current search of the most recent literature on the topic. The terms "nanomaterials", "nano medicine'', "Heart transplantation (HT)", "Nano-drug delivery system (NDDS)" or their combination were searched in PubMed and Google Scholar. The specified timeframe began from 1990, and we prioritized publications mainly from the last 10 years. Key Content and Findings Nano-systems integrating therapeutic and diagnostic functions have been applied to cardiovascular diseases (CVDs) with their unique advantages in multiple fields such as drug delivery, tissue engineering, gene editing, imaging, biomarker editing, and many other aspects. In terms of transplantation, the preservation, transportation, and pretreatment of donor hearts machine perfusion (MP) provide the possibility for nano-systems with unique features, and therapeutic and diagnostic functions to be directly and passively targeted in order to improve the functional status of the transplanted organs or to increase the ability to tolerate the graft of patients. The development of nano-imaging, nanosensor, and nano biomarker technologies are also being applied to monitor the status of transplant recipients for early prevention and treatment of post-transplantation-related complications. Nanomaterials combined with cardiac tissue engineering and gene editing technologies could also expand graft sources and alleviate donor shortages. Conclusions Although the overall research on nanomaterial applications in the field of HT is in its infancy, its role in improving the prognosis of transplant recipients and breaking the current dilemma of HT is clear. However, before nanotechnologies can be translated into clinical applications in the future, they must be aimed at ensuring the drug delivery system's safety and pose a challenge in the direction of the ability to intervene with multiple drugs in combination.
Collapse
Affiliation(s)
- Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Avila-Tavares R, Gibran L, Brito LGO, Tavoni TM, Gonçalves MO, Baracat EC, Maranhão RC, Podgaec S. Pilot study of treatment of patients with deep infiltrative endometriosis with methotrexate carried in lipid nanoparticles. Arch Gynecol Obstet 2024; 309:659-667. [PMID: 37987824 DOI: 10.1007/s00404-023-07246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE Previously, lipid nanoparticles (LDE) injected in women with endometriosis were shown to concentrate in the lesions. Here, the safety and feasibility of LDE carrying methotrexate (MTX) to treat deep infiltrating endometriosis was tested. DESIGN Prospective pilot study. SETTING Perola Byington Hospital Reference for Women's Health. SUBJECTS Eleven volunteers (aged 30-47 years, BMI 26.15 ± 6.50 kg/m2) with endometriosis with visual analog scale pelvic pain scores (VAS) > 7 and rectosigmoid lesions were enrolled in the study. INTERVENTION Three patients were treated with LDE-MTX at single intravenous 25 mg/m2 dose of MTX and eight patients with two 25 mg/m2 doses with 1-week interval. MAIN OUTCOME MEASURES Clinical complaints, blood count, and biochemistry were analyzed before treatment and on days 90, 120, and 180 after LDE-MTX administration. Endometriotic lesions were evaluated by pelvic and transvaginal ultrasound (TVUS) before treatment and on days 30 and 180 after LDE-MTX administration. RESULTS No clinical complaints related with LDE-MTX treatment were reported by the patients, and no hematologic, renal, or hepatic toxicities were observed in the laboratorial exams. FSH, LH, TSH, free T4, anti-Müllerian hormone, and prolactin levels were also within normal ranges during the observation period. Scores for deep dyspareunia (p < 0.001), chronic pelvic pain (p = 0.008), and dyschezia (p = 0.025) were improved over the 180-day observation period. There was a non-significant trend for reduction of VAS scores for dysmenorrhea. Bowel lesions by TVUS were unchanged. No clear differences between the two dose levels in therapeutic responses were observed. CONCLUSION Results support the safety and feasibility of using LDE-MTX in women with deep infiltrating endometriosis as a novel and promising therapy for the disease. More prolonged treatment schemes should be tested in future placebo-controlled studies aiming to establish the usefulness of this novel nanomedicine approach.
Collapse
Affiliation(s)
- Roberta Avila-Tavares
- Gynecological Endoscopy Center of the Perola Byington Hospital Reference for Women's Health, São Paulo, Brazil.
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas, Campinas, Brazil.
| | - Luciano Gibran
- Gynecological Endoscopy Center of the Perola Byington Hospital Reference for Women's Health, São Paulo, Brazil
| | - Luiz Gustavo Oliveira Brito
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Thauany Martins Tavoni
- Lipid Metabolism Laboratory, Heart Institute, University of Sao Paulo, São Paulo, Brazil
| | | | - Edmund Chada Baracat
- Department of Obstetrics and Gynecology, Medical School Hospital, University of Sao Paulo, São Paulo, Brazil
| | | | - Sergio Podgaec
- Department of Obstetrics and Gynecology, Medical School Hospital, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Xing K, Che Y, Wang Z, Yuan S, Wu Q, Shi F, Chen Y, Shen X, Zhong X, Xie X, Zhu Q, Li X. Chitosan nanoparticles encapsulated with BEZ235 prevent acute rejection in mouse heart transplantation. Int Immunopharmacol 2023; 124:110922. [PMID: 37699303 DOI: 10.1016/j.intimp.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Acute rejection may manifest following heart transplantation, despite the implementation of relatively well-established immunosuppression protocols. The significance of the mTOR signaling pathway in rejection is widely acknowledged. BEZ235, a second-generation mTOR inhibitor with dual inhibitory effects on PI3K and mTOR, holds promise for clinical applications. This study developed a nanodelivery system, BEZ235@NP, to facilitate the intracellular delivery of BEZ235, which enhances efficacy and reduces adverse effects by improving the poor solubility of BEZ235. In the complete MHCII-mismatched model, BEZ235@NP significantly prolonged cardiac allografts survival compared to free BEZ235, which was attributed to more effective suppression of effector T cell activation and promotion of greater expansion of Tregs. These nanoparticles demonstrated excellent biosafety and exhibited no short-term biotoxicity upon investigation. To elucidate the mechanism, primary T cells were isolated from the spleen and it was observed that BEZ235@NP treatment resulted in the arrest of these cells in the G0/G1 phase. As indicated by Western blot analysis, BEZ235@NP substantially reduced mTOR phosphorylation. This, in turn, suppressed downstream pathways and ultimately exerted an anti-proliferative and anti-activating effect on cells. Furthermore, it was observed that inhibition of the mTOR pathway stimulated T-cell autophagy. In conclusion, the strategy of intracellular delivery of BEZ235 presents promising applications for the treatment of acute rejection.
Collapse
Affiliation(s)
- Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China.
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Xiaoyan Shen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Xiaoping Xie
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Qingyi Zhu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| | - Xu Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China; Central Laboratory, Renmin Hospital of Wuhan University. District No. 99, Zhang Road, Wuhan 430060, Hubei, PR China
| |
Collapse
|
5
|
Czerniel J, Gostyńska A, Jańczak J, Stawny M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur J Pharm Biopharm 2023; 191:36-56. [PMID: 37586663 DOI: 10.1016/j.ejpb.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.
Collapse
Affiliation(s)
- Joanna Czerniel
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland.
| | - Julia Jańczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| |
Collapse
|
6
|
Mangoni AA, Sotgia S, Zinellu A, Carru C, Pintus G, Damiani G, Erre GL, Tommasi S. Methotrexate and cardiovascular prevention: an appraisal of the current evidence. Ther Adv Cardiovasc Dis 2023; 17:17539447231215213. [PMID: 38115784 PMCID: PMC10732001 DOI: 10.1177/17539447231215213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
New evidence continues to accumulate regarding a significant association between excessive inflammation and dysregulated immunity (local and systemic) and the risk of cardiovascular events in different patient cohorts. Whilst research has sought to identify novel atheroprotective therapies targeting inflammation and immunity, several marketed drugs for rheumatological conditions may serve a similar purpose. One such drug, methotrexate, has been used since 1948 for treating cancer and, more recently, for a wide range of dysimmune conditions. Over the last 30 years, epidemiological and experimental studies have shown that methotrexate is independently associated with a reduced risk of cardiovascular disease, particularly in rheumatological patients, and exerts several beneficial effects on vascular homeostasis and blood pressure control. This review article discusses the current challenges with managing cardiovascular risk and the new frontiers offered by drug discovery and drug repurposing targeting inflammation and immunity with a focus on methotrexate. Specifically, the article critically appraises the results of observational, cross-sectional and intervention studies investigating the effects of methotrexate on overall cardiovascular risk and individual risk factors. It also discusses the putative molecular mechanisms underpinning the atheroprotective effects of methotrexate and the practical advantages of using methotrexate in cardiovascular prevention, and highlights future research directions in this area.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Italian Centre of Precision Medicine and Chronic Inflammation, Milan, Italy
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
7
|
Guido MC, Lopes NDM, Albuquerque CI, Tavares ER, Jensen L, Carvalho PDO, Tavoni TM, Dias RR, Pereira LDV, Laurindo FRM, Maranhão RC. Treatment With Methotrexate Associated With Lipid Core Nanoparticles Prevents Aortic Dilation in a Murine Model of Marfan Syndrome. Front Cardiovasc Med 2022; 9:893774. [PMID: 35757348 PMCID: PMC9226570 DOI: 10.3389/fcvm.2022.893774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
In Marfan syndrome (MFS), dilation, dissection, and rupture of the aorta occur. Inflammation can be involved in the pathogenicity of aortic defects and can thus be a therapeutic target for MFS. Previously, we showed that the formulation of methotrexate (MTX) associated with lipid nanoparticles (LDE) has potent anti-inflammatory effects without toxicity. To investigate whether LDEMTX treatment can prevent the development of aortic lesions in the MFS murine model. MgΔloxPneo MFS (n = 40) and wild-type (WT, n = 60) mice were allocated to 6 groups weekly injected with IP solutions of: (1) only LDE; (2) commercial MTX; (3) LDEMTX (dose = 1mg/kg) between 3rd and 6th months of life. After 12 weeks of treatments, animals were examined by echocardiography and euthanatized for morphometric and molecular studies. MFS mice treated with LDEMTX showed narrower lumens in the aortic arch, as well as in the ascending and descending aorta. LDEMTX reduced fibrosis and the number of dissections in MFS but not the number of elastic fiber disruptions. In MFS mice, LDEMTX treatment lowered protein expression of pro-inflammatory factors macrophages (CD68), T-lymphocytes (CD3), tumor necrosis factor-α (TNF-α), apoptotic factor cleaved-caspase 3, and type 1 collagen and lowered the protein expression of the transforming growth factor-β (TGF-β), extracellular signal-regulated kinases ½ (ERK1/2), and SMAD3. Protein expression of CD68 and CD3 had a positive correlation with an area of aortic lumen (r2 = 0.36; p < 0.001), suggesting the importance of inflammation in the causative mechanisms of aortic dilation. Enhanced adenosine availability by LDEMTX was suggested by higher aortic expression of an anti-adenosine A2a receptor (A2a) and lower adenosine deaminase expression. Commercial MTX had negligible effects. LDEMTX prevented the development of MFS-associated aortic defects and can thus be a candidate for testing in clinical studies.
Collapse
Affiliation(s)
- Maria Carolina Guido
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Natalia de Menezes Lopes
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Camila Inagaki Albuquerque
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Elaine Rufo Tavares
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Leonardo Jensen
- Laboratory of Hypertension, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Priscila de Oliveira Carvalho
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Thauany Martins Tavoni
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ribeiro Dias
- Department of Cardiovascular Surgery, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Lygia da Veiga Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Raul Cavalcante Maranhão
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
- *Correspondence: Raul Cavalcante Maranhão
| |
Collapse
|
8
|
Zhou L, Wolfson A, Vaidya AS. Noninvasive methods to reduce cardiac complications postheart transplant. Curr Opin Organ Transplant 2022; 27:45-51. [PMID: 34907978 DOI: 10.1097/mot.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Long-term success of heart transplantation is limited by allograft rejection and cardiac allograft vasculopathy (CAV). Classic management has relied on frequent invasive testing to screen for early features of rejection and CAV to allow for early treatment. In this review, we discuss new developments in the screening and prevention of allograft rejection and CAV. RECENT FINDINGS Newer noninvasive screening techniques show excellent sensitivity and specificity for the detection of clinically significant rejection. New biomarkers and treatment targets continue to be identified and await further studies regarding their utility in preventing allograft vasculopathy. SUMMARY Noninvasive imaging and biomarker testing continue to show promise as alternatives to invasive testing for allograft rejection. Continued validation of their effectiveness may lead to new surveillance protocols with reduced frequency of invasive testing. Furthermore, these noninvasive methods will allow for more personalized strategies to reduce the complications of long-term immunosuppression whereas continuing the decline in the overall rate of allograft rejection.
Collapse
Affiliation(s)
- Leon Zhou
- Department of Cardiology, Keck School of Medicine, Los Angeles, California, USA
| | | | | |
Collapse
|
9
|
Pepineli R, Santana AC, Silva FMO, Tavoni TM, Stolf NAG, Noronha IL, Maranhão RC. Use of paclitaxel carried in lipid nanoparticles to treat aortic allograft transplantation in rats. J Pharm Pharmacol 2021; 73:1092-1100. [PMID: 33950246 DOI: 10.1093/jpp/rgab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of this study was to test whether lipid core nanoparticles loaded with paclitaxel (LDE-PTX) protect rat aortic allograft from immunological damage. METHODS Fisher and Lewis rats were used differing in minor histocompatibility loci. Sixteen Lewis rats were allocated to four-animal groups: SYNG (syngeneic), Lewis rats receiving aorta grafts from Lewis rats; ALLO (allogeneic), Lewis rats receiving aortas from Fisher rats; ALLO+LDE (allogeneic transplant treated with LDE), Lewis rats receiving aortas from Fisher rats, treated with LDE (weekly injection for 3 weeks); ALLO+LDE-PTX (allogeneic transplant treated with LDE-PTX), Lewis rats receiving aortas from Fisher rats treated with LDE-PTX (4 mg/kg weekly for 3 weeks). Treatments began on transplantation day. RESULTS Thirty days post-transplantation, SYNG showed intact aortas. ALLO and ALLO+LDE presented intense neointimal formation. In ALLO+LDE-PTX, treatment inhibited neointimal formation; narrowing of aortic lumen was prevented in ALLO and ALLO+LDE. LDE-PTX strongly inhibited proliferation and intimal invasion by smooth muscle cells, diminished 4-fold presence of apoptotic/dead cells in the intima, reduced the invasion of aorta by macrophages and T-cells and gene expression of pro-inflammatory tumour necrosis factor-alpha (TNFα), interferon gamma (IFNγ) and interleukin-1 beta (IL-1β). CONCLUSIONS LDE-PTX was effective in preventing the vasculopathy associated with rejection and may offer a potent therapeutic tool for post-transplantation.
Collapse
Affiliation(s)
- Rafael Pepineli
- Laboratorio de Nefrologia Celular e Molecular, Divisao de Nefrologia, Faculdade de Medicina, Universidade de Sao Paulo
| | - Alexandre C Santana
- Laboratorio de Nefrologia Celular e Molecular, Divisao de Nefrologia, Faculdade de Medicina, Universidade de Sao Paulo
| | - Filipe M O Silva
- Laboratorio de Nefrologia Celular e Molecular, Divisao de Nefrologia, Faculdade de Medicina, Universidade de Sao Paulo
| | - Thauany M Tavoni
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo
| | - Noedir A G Stolf
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo
| | - Irene L Noronha
- Laboratorio de Nefrologia Celular e Molecular, Divisao de Nefrologia, Faculdade de Medicina, Universidade de Sao Paulo
| | - Raul C Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo.,Faculdade de Ciencias Farmaceuticas; Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Prilepskii AY, Serov NS, Kladko DV, Vinogradov VV. Nanoparticle-Based Approaches towards the Treatment of Atherosclerosis. Pharmaceutics 2020; 12:E1056. [PMID: 33167402 PMCID: PMC7694323 DOI: 10.3390/pharmaceutics12111056] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis, being an inflammation-associated disease, represents a considerable healthcare problem. Its origin remains poorly understood, and at the same time, it is associated with extensive morbidity and mortality worldwide due to myocardial infarctions and strokes. Unfortunately, drugs are unable to effectively prevent plaque formation. Systemic administration of pharmaceuticals for the inhibition of plaque destabilization bears the risk of adverse effects. At present, nanoscience and, in particular, nanomedicine has made significant progress in both imaging and treatment of atherosclerosis. In this review, we focus on recent advances in this area, discussing subjects such as nanocarriers-based drug targeting principles, approaches towards the treatment of atherosclerosis, utilization of theranostic agents, and future prospects of nanoformulated therapeutics against atherosclerosis and inflammatory diseases. The focus is placed on articles published since 2015 with additional attention to research completed in 2019-2020.
Collapse
Affiliation(s)
| | | | | | - Vladimir V. Vinogradov
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 Saint Petersburg, Russia; (A.Y.P.); (N.S.S.); (D.V.K.)
| |
Collapse
|
11
|
Mallah SI, Atallah B, Moustafa F, Naguib M, El Hajj S, Bader F, Mehra MR. Evidence-based pharmacotherapy for prevention and management of cardiac allograft vasculopathy. Prog Cardiovasc Dis 2020; 63:194-209. [DOI: 10.1016/j.pcad.2020.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023]
|
12
|
Takegami S, Konishi A, Okazaki S, Fujiwara M, Kitade T. Effects of mono- and dialkylglucosides on the characterisation and blood circulation of lipid nanoemulsions. J Microencapsul 2019; 36:738-746. [PMID: 31573357 DOI: 10.1080/02652048.2019.1671909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aim: Effects of two cosurfactants, n-alkylglycosides with mono- or disaccharide groups - N-nonyl β-D-glucopyranoside (N-Glu) and N-decyl β-D-maltoside (D-Mal) - were studied to the stability in saline solution, interaction with serum albumin, and blood circulation of the lipid nanoemulsion (LNE).Methods: The LNEs composed of soybean oil, phosphatidylcholine, and sodium palmitate were prepared without (Control-LNE) and with N-Glu or D-Mal (NG-LNE and DM-LNE, respectively).Results: In saline solution, NG-LNE exhibited a smaller droplet size than Control-LNE, while the size of DM-LNE was significantly increased compared with the other LNEs. The fluorescence resonance energy transfer method showed that the order of albumin interaction was DM-LNE > NG-LNE > Control-LNE. In vivo blood circulation in mice, showed greater fractions of both NG-LNE and DM-LNE remaining in blood over time compared with Control-LNE.Conclusions: The nature of high stability in saline solution and high affinity for serum albumin led to the prolonged circulation of LNE.
Collapse
Affiliation(s)
- Shigehiko Takegami
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsuko Konishi
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shizuno Okazaki
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mai Fujiwara
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tatsuya Kitade
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
13
|
Mangoni AA, Tommasi S, Zinellu A, Sotgia S, Carru C, Piga M, Erre GL. Repurposing existing drugs for cardiovascular risk management: a focus on methotrexate. Drugs Context 2018; 7:212557. [PMID: 30459819 PMCID: PMC6239018 DOI: 10.7573/dic.212557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
About 20% of patients with a history of atherosclerotic cardiovascular disease will experience further cardiovascular events despite maximal pharmacological treatment with cardioprotective drugs. This highlights the presence of residual cardiovascular risk in a significant proportion of patients and the need for novel, more effective therapies. These therapies should ideally target different pathophysiological pathways involved in the onset and the progression of atherosclerosis, particularly the inflammatory and immune pathways. Methotrexate is a first-line disease-modifying antirheumatic drug that is widely used for the management of autoimmune and chronic inflammatory disorders. There is some in vitro and in vivo evidence that methotrexate might exert a unique combination of anti-inflammatory, blood pressure lowering, and vasculoprotective effects. Pending the results of large prospective studies investigating surrogate end-points as well as morbidity and mortality, repurposing methotrexate for cardiovascular risk management might represent a cost-effective strategy with immediate public health benefits. This review discusses the current challenges in the management of cardiovascular disease; the available evidence on the effects of methotrexate on inflammation, blood pressure, and surrogate markers of arterial function; suggestions for future research directions; and practical considerations with the use of methotrexate in this context.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Sara Tommasi
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Matteo Piga
- Rheumatology Unit, University Clinic and AOU of Cagliari, Italy
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| |
Collapse
|
14
|
Zhu P, Atkinson C, Dixit S, Cheng Q, Tran D, Patel K, Jiang YL, Esckilsen S, Miller K, Bazzle G, Allen P, Moore A, Broome AM, Nadig SN. Organ preservation with targeted rapamycin nanoparticles: a pre-treatment strategy preventing chronic rejection in vivo. RSC Adv 2018; 8:25909-25919. [PMID: 30220998 PMCID: PMC6124302 DOI: 10.1039/c8ra01555d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Hypothermic preservation is the standard of care for storing organs prior to transplantation. Endothelial and epithelial injury associated with hypothermic storage causes downstream graft injury and, as such, the choice of an ideal donor organ preservation solution remains controversial. Cold storage solutions, by design, minimize cellular necrosis and optimize cellular osmotic potential, but do little to assuage immunological cell activation or immune cell priming post transplantation. Thus, here we explore the efficacy of our previously described novel Targeted Rapamycin Micelles (TRaM) as an additive to standard-of-care University of Wisconsin preservation solution as a means to alter the immunological microenvironment post transplantation using in vivo models of tracheal and aortic allograft transplantation. In all models of transplantation, grafts pre-treated with 100 ng mL-1 of TRaM augmented preservation solution ex vivo showed a significant inhibition of chronic rejection post-transplantation, as compared to UW augmented with free rapamycin at a ten-fold higher dose. Here, for the first time, we present a novel method of organ pretreatment using a nanotherapeutic-based cellular targeted delivery system that enables donor administration of rapamycin, at a ten-fold decreased dose during cold storage. Clinically, these pretreatment strategies may positively impact post-transplant outcomes and can be readily translated to clinical scenarios.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA.,Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Carl Atkinson
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Suraj Dixit
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Qi Cheng
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA.,Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danh Tran
- Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Kunal Patel
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Yu-Lin Jiang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Scott Esckilsen
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Kayla Miller
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Grace Bazzle
- Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Patterson Allen
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Alfred Moore
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Ann-Marie Broome
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA. .,Department of Bioengineering, Clemson University, USA
| | - Satish N Nadig
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| |
Collapse
|