1
|
Liao Y, Lv F, Quan T, Wang C, Li J. Flavonoids in natural products for the therapy of liver diseases: progress and future opportunities. Front Pharmacol 2024; 15:1485065. [PMID: 39512816 PMCID: PMC11540641 DOI: 10.3389/fphar.2024.1485065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
The liver is the largest, important organ and the site for essential biochemical reactions in the human body. It has the function to detoxify toxic substances and synthesize useful biomolecules. Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. For centuries, flavonoids and their preparations which have the beneficial health effects in chronic diseases have been used to treat various human illnesses. Flavonoids mainly include flavones, isoflavones, flavanols, dihydroflavones, dihydroflavonols, anthocyanins and chalcones. The primary objective of this review is to assess the efficacy and safety of flavonoids, mainly from a clinical point of view and considering clinically relevant end-points. We summarized the recent progress in the research of hepatoprotective and molecular mechanisms of different flavonoids bioactive ingredients and also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in flavonoids and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
Affiliation(s)
- Yanmei Liao
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Fei Lv
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Tianwen Quan
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Jike Li
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Hormozi M, Moulaee M, Alaee M, Beigi Boroujeni N, Beigi Boroujeni M. Effect of Silymarin on Expression of micro-RNA-21 and Matrix Metalloproteinase (MMP) 2 and 9 and Tissue Inhibitors of Matrix Metalloproteinase (TIMP) 1 and 2 in Hepatocellular Carcinoma Cell Line (HepG2). Med J Islam Repub Iran 2024; 38:78. [PMID: 39416370 PMCID: PMC11480674 DOI: 10.47176/mjiri.38.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 10/19/2024] Open
Abstract
Background Silymarin is a flavonolignan that has various medicinal properties such as liver protection, antioxidant, anti-inflammatory, anti-cancer and heart protection activities. The aim of this study was to investigate the effect of silymarin on the expression level of mir-21, matrix metalloproteinase(MMP), and their tissue inhibitors (TIMPs) in liver cancer HepG2 cell line. Methods An in-vitro experimental study was conducted on the human HepG2 cells prepared from Pasteur Institute, Tehran, Iran. Four concentrations of 0 (control), 50, 100, and 150 µM of silymarin were considered as the study groups according to the MTT assay. Gene expression study was performed using real-time PCR. The studied genes were mir-21, MMP-2, MMP-9, TIMP-1 and TIMP-2. In addition, some apoptosis-related genes including BAX, BCL2 and Caspase3 (CAS3) were investigated. GAPDH was used as an internal control. Relative expression was calculated by REST program using t-test on the logarithm of expression considering a significance level of 0.05. Results The significant up-regulations consisted of TIMP genes for doses 100 µM and 150 µM, and the apoptosis activating genes CAS3 and BAX (P < 0.05). The significant down-regulations consisted of MMP-9 in all concentrations, MMP-2 in concentration 100 µM, and the apoptosis inhibitory gene BCL2 in concentrations 50 µM and 100 µM (P < 0.05). In addition, mir-21 as an oncogenic micro-RNA showed significant down-regulation for all doses (P < 0.05). All the comparisons were with the control group. Conclusion The present study showed that silymarin could affect the HepG2 cell line at the gene expression level via increasing apoptosis and changing the expression of MMP-2, MMP-9, TIMP-1, TIMP-2 and mir-21. These findings were in line with each other and in favor of suppression of tumoral activity in this cell line.
Collapse
Affiliation(s)
- Maryam Hormozi
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Meysam Moulaee
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Alaee
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nasim Beigi Boroujeni
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mandana Beigi Boroujeni
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
3
|
Shi Q, He J, Chen G, Xu J, Zeng Z, Zhao X, Zhao B, Gao X, Ye Z, Xiao M, Li H. The chemical composition of Diwu YangGan capsule and its potential inhibitory roles on hepatocellular carcinoma by microarray-based transcriptomics. J Tradit Complement Med 2024; 14:381-390. [PMID: 39035694 PMCID: PMC11259662 DOI: 10.1016/j.jtcme.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 07/23/2024] Open
Abstract
The Traditional Chinese Medicine compound preparation known as Diwu Yanggan capsule (DWYG) can effectively hinder the onset and progression of hepatocellular carcinoma (HCC), which is recognized worldwide as a significant contributor to fatalities associated with cancer. Nevertheless, the precise mechanisms implicated have remained ambiguous. In present study, the model of HCC was set up by the 2-acetylaminofluorene (2-AAF)/partial hepatectomy (PH) in rats. To confirm the differentially expressed genes (DEGs) identified in the microarray analysis, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted. In the meantime, the liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS) was employed to characterize the component profile of DWYG. Consequently, the DWYG treatment exhibited the ability to reverse 51 variation genes induced by 2-AAF/PH. Additionally, there was an overlap of 54 variation genes between the normal and model groups. Upon conducting RT-qPCR analysis, it was observed that the expression levels of all genes were increased by 2-AAF/PH and subsequently reversed after DWYG treatment. Notably, the fold change of expression levels for all genes was below 0.5, with 3 genes falling below 0.25. Moreover, an investigation was conducted to determine the signaling pathway that was activated/inhibited in the HCC group and subsequently reversed in the DWYG group. Moreover, the component profile of DWYG encompassed a comprehensive compilation of 206 compounds that were identified or characterized. The findings of this study elucidated the potential alleviative mechanisms of DWYG in the context of HCC, thereby holding significant implications for its future clinical utilization and widespread adoption.
Collapse
Affiliation(s)
- Qingxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jiangcheng He
- Wuhan Integrated Traditional Chinese and Western Medicine Orthopedic Hospital, Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Guangya Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xueyan Zhao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Binbin Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiang Gao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Zhihua Ye
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Mingzhong Xiao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
4
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
5
|
Cayetano-Salazar L, Hernandez-Moreno JA, Bello-Martinez J, Olea-Flores M, Castañeda-Saucedo E, Ramirez M, Mendoza-Catalán MA, Navarro-Tito N. Regulation of cellular and molecular markers of epithelial-mesenchymal transition by Brazilin in breast cancer cells. PeerJ 2024; 12:e17360. [PMID: 38737746 PMCID: PMC11088821 DOI: 10.7717/peerj.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jose A. Hernandez-Moreno
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jorge Bello-Martinez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Eduardo Castañeda-Saucedo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Monica Ramirez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Miguel A. Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
6
|
Liu Y, Fang C, Luo J, Gong C, Wang L, Zhu S. Traditional Chinese Medicine for Cancer Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:583-604. [PMID: 38716616 DOI: 10.1142/s0192415x24500253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, due to advancements in medical conditions and the development of scientific research, the fundamental research of TCM antitumor treatments has progressed from the cellular level to the molecular and genetic levels. Previous studies have demonstrated the significant role of traditional Chinese medicine (TCM) in antitumor therapy through various mechanisms and pathways. Its mechanism of action is closely associated with cancer biology across different stages. This includes inhibiting tumor cell proliferation, blocking invasion and metastasis to surrounding tissues, inducing tumor cell apoptosis, inhibiting tumor angiogenesis, regulating immune function, maintaining genome stability, preventing mutation, and regulating cell energy metabolism. The use of TCM for eliciting antitumor effects not only has a good therapeutic effect and low side effects, it also provides a solid theoretical basis for clinical treatment and medication. This paper reviews the mechanism of the antitumor effects of TCM based on tumor characteristics. Through our review, we found that TCM not only directly inhibits tumors, but also enhances the body's immunity, thereby indirectly inducing an antitumor effect. This function aligns with the TCM theory of "strengthening the body's resistance to eliminate pathogenic factors". Furthermore, TCM will play a significant role in tumor treatment in clinical settings.
Collapse
Affiliation(s)
- Yangli Liu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Cheng Fang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jiaojiao Luo
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Chenyuan Gong
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
7
|
Lai HC, Cheng JC, Yip HT, Jeng LB, Huang ST. Chinese herbal medicine decreases incidence of hepatocellular carcinoma in diabetes mellitus patients with regular insulin management. World J Gastrointest Oncol 2024; 16:716-731. [PMID: 38577471 PMCID: PMC10989382 DOI: 10.4251/wjgo.v16.i3.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is an independent risk factor for hepatocellular carcinoma (HCC), while insulin is a potent mitogen. Identifying a new therapeutic modality for preventing insulin users from developing HCC is a critical goal for researchers. AIM To investigate whether regular herbal medicine use can decrease HCC risk in DM patients with regular insulin control. METHODS We used data acquired from the Taiwanese National Health Insurance research database between 2000 and 2017. We identified patients with DM who were prescribed insulin for > 3 months. The herb user group was further defined as patients prescribed herbal medication for DM for > 3 months per annum during follow-up. We matched the herb users to nonusers at a 1:3 ratio according to age, sex, comorbidities and index year by propensity score matching. We analyzed HCC incidence, HCC survival rates, and the herbal prescriptions involved. RESULTS We initially enrolled 657144 DM patients with regular insulin use from 2000 to 2017. Among these, 46849 patients had used a herbal treatment for DM, and 140547 patients were included as the matched control group. The baseline variables were similar between the herb users and nonusers. DM patients with regular herb use had a 12% decreased risk of HCC compared with the control group [adjusted hazard ratio (aHR) = 0.88, 95%CI = 0.80-0.97]. The cumulative incidence of HCC in the herb users was significantly lower than that of the nonusers. Patients with a herb use of > 5 years cumulatively exhibited a protective effect against development of HCC (aHR = 0.82, P < 0.05). Of patients who developed HCC, herb users exhibited a longer survival time than nonusers (aHR = 0.78, P = 0.0001). Additionally, we report the top 10 herbs and formulas in prescriptions and summarize the potential pharmacological effects of the constituents. Our analysis indicated that Astragalus propinquus (Huang Qi) plus Salvia miltiorrhiza Bunge (Dan Shen), and Astragalus propinquus (Huang Qi) plus Trichosanthes kirilowii Maxim. (Tian Hua Fen) were the most frequent combination of single herbs. Meanwhile, Ji Sheng Shen Qi Wan plus Dan Shen was the most frequent combination of herbs and formulas. CONCLUSION This large-scale retrospective cohort study reveals that herbal medicine may decrease HCC risk by 12% in DM patients with regular insulin use.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung 404327, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital; School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
8
|
Huang W, Wang C, Zhang H. Eriodictyol inhibits the motility, angiogenesis and tumor growth of hepatocellular carcinoma via NLRP3 inflammasome inactivation. Heliyon 2024; 10:e24401. [PMID: 38317873 PMCID: PMC10839802 DOI: 10.1016/j.heliyon.2024.e24401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
NLRP3 involves in the development of hepatocellular carcinoma (HCC). Eriodictyol has shown its inhibitory effect on HCC cell proliferation. However, the underlying mechanism of eriodictyol in HCC is still unclear. This study aimed to explore the effect of and mechanism of eriodictyol on HCC. In this study, compared with eriodictyol (0 μM) group, eriodictyol significantly suppressed HepG2 cells (eriodictyol of 25, 50 and 100 μM) and Huh-7 cells (eriodictyol of 50 and 100 μM) viability, invasion, tube formation, metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions with IC50 of 45.63 μM and 78.26 μM in vitro, respectively. Besides, eriodictyol significantly repressed NLRP3 expression, and reduced the protein levels of NLRP3 inflammasome-related proteins, adapter protein ASC, caspase-1, interleukin (IL)-18, and IL-1β in HepG2 (eriodictyol of 25, 50 and 100 μM) and Huh-7 cells (eriodictyol of 50 and 100 μM), respectively. Meanwhile, compared with control group, NLRP3 overexpression reversed the anti-metastatic effects of 100 μM eriodictyol on HCC cells invasion, tube formation, and metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions, whereas NLRP3 knockdown enhanced the anti-metastatic effects of 100 μM eriodictyol on HCC cells. In vivo, compared with control group, eriodictyol significantly reduced the tumor growth, liver damage, inhibited the activation of NLRP3 inflammasome, and improved liver function, whereas NLRP3 overexpressing neutralized the anti-tumor effects of eriodictyol and degraded liver function. Hence, eriodictyol inhibited HCC cell viability, motility, angiogenesis and tumor growth via NLRP3 inflammasome inactivation both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Huang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
9
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Duan N, Hu X, Zhou R, Li Y, Wu W, Liu N. A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Mol Nutr Food Res 2023; 67:e2200435. [PMID: 36698331 DOI: 10.1002/mnfr.202200435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is the local environment where malignant cells strive and survive, composed of cancer cells and their surroundings, regulating essential tumor survival, and promotion functions. Dietary flavonoids are abundantly present in common vegetables and fruits and exhibit good anti-cancer activities, which significantly inhibit tumorigenesis by targeting TME constituents and their interaction with cancer cells. This review aims to synthesize information concerning the modulation of TME by dietary flavonoids, as well as to provide insights into the molecular basis of its potential anti-tumor activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the TME processes, involving cell proliferation, invasion and migration, continuous angiogenesis, and immune inflammation. This study will provide a theoretical basis for the development of the leading compound targeting TME for anti-cancer therapies from these dietary flavonoids.
Collapse
Affiliation(s)
- Namin Duan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.,Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
11
|
Lai HC, Lin HJ, Jeng LB, Huang ST. Roles of conventional and complementary therapies in recurrent hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:19-35. [PMID: 36684056 PMCID: PMC9850766 DOI: 10.4251/wjgo.v15.i1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer and the fourth leading cause of cancer-related deaths in the world. HCC has a reported recurrence rate of 70%-80% after 5 years of follow-up. Controlling tumor recurrence is the most critical factor associated with HCC mortality. Conventional salvage therapies for recurrent HCC include re-hepatectomy or liver transplantation, transcatheter arterial chemoembolization, Y-90, target therapy, and immunotherapy; however, these conventional treatment modalities have yet to achieve consistently favorable outcomes. Meanwhile, previous studies have demonstrated that conventional therapies in combination with traditional Chinese medicine (TCM), acupuncture, moxibustion or dietary supplements could notably benefit patients with HCC recurrence by strengthening and augmenting the overall management strategy. However, systemic reviews related to the interactions between complementary therapies and conventional therapy in recurrent HCC are limited. In this review, we discuss the molecular mechanisms underlying the functions of complementary therapies for recurrent HCC, which include augmenting the local control to improve the congestion status of primary tumors and reducing multicentric tumor occurrence via inducing autophagy, apoptosis or cell cycle arrest. TCM and its derivatives may play important roles in helping to control HCC recurrence by inhibiting epithelial-mesenchymal transition, migration, invasion, and metastasis, inhibiting cancer stem cells, and ameliorating drug resistance.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709204, Taiwan
| |
Collapse
|
12
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
13
|
Edible Pueraria lobata-Derived Exosomes Promote M2 Macrophage Polarization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238184. [PMID: 36500277 PMCID: PMC9735656 DOI: 10.3390/molecules27238184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Pueraria lobata (known as Gegen) is an edible and medicinal herb that is a nutritious medicine food homology plant in China. Previous studies indicated that P. lobata plays an essential role in controlling cytokines. However, the exact mechanism of the inflammation response is still unknown. In this study, we observed the uptake of P. lobata-derived exosomes (Exos) in isolated mouse macrophages. Our results show that P. lobata-derived Exos shift M1 macrophages toward the M2. These data present that P. lobata and puerarin might exert and enhance anti-inflammatory effects through the activation of exosomes and shifts in macrophage polarization, providing strong evidence for the application of P. lobata as novel an anti-inflammatory therapeutic biomaterial.
Collapse
|
14
|
Anticancer Effect of Puerarin on Ovarian Cancer Progression Contributes to the Tumor Suppressor Gene Expression and Gut Microbiota Modulation. J Immunol Res 2022; 2022:4472509. [PMID: 35935578 PMCID: PMC9352477 DOI: 10.1155/2022/4472509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OC) causes more deaths than any other cancer of the female reproductive system due to its late presentation and malignant nature. Although significant progress has been made in the diagnosis and treatment of OC over the last decade, chemotherapeutic drug resistance and cancer recurrence remain serious challenges in OC management. In the field of cancer therapy, traditional Chinese herbal medicines and their active compounds have been widely reported to have favorable therapeutic effects on cancer. Recent studies have also revealed the protective effect of puerarin in cancer, but the exact role and underlying mechanism of puerarin in OC remain unclear. Here, we established in vivo and in vitro OC models to evaluate the anticancer effect of puerarin. It was found that puerarin significantly inhibited OC cell viability and proliferation and induced cell apoptosis. In OC model mice, puerarin treatment suppressed tumor formation and modulated the gut microbiome. In addition, the expression of tumor suppressor genes was activated by puerarin in vitro and in vivo. These findings add to the existing knowledge on the usefulness of herbal active ingredients for the prevention and treatment of OC and provide a new perspective regarding the therapeutic potential of puerarin in cancer.
Collapse
|
15
|
Production of bioactive compounds from callus of Pueraria thomsonii Benth with promising cytotoxic and antibacterial activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
16
|
JPHYD Inhibits miR-21-5p/Smad7-Mediated Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:7823433. [PMID: 35518787 PMCID: PMC9064503 DOI: 10.1155/2022/7823433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022]
Abstract
Background. Studies have shown that Jianpi Huayu Decoction (JPHYD) can inhibit the growth of hepatocellular carcinoma cells, but the mechanism of its effect was not clear at present. Methods. We assessed the effect of JPHYD using liver cancer cells as in vitro cell model and xenograft tumor as in vivo model. CCK8, EdU, wound-healing, and transwell assays were performed to assess the cell growth, migration, and invasion of hepatocellular carcinoma (HCC) cell lines HepG2 and MHCC97H. Western blot assay was performed to observe the protein level of E-cadherin, Smad7, N-cadherin, Snail, Smad3, Vimentin, and Zeb1. qRT-PCR assay was used to observe the expression of miR-21-5p in clinical liver cancer tissue samples and in HepG2 and MHCC97H cells. Animal tumorigenesis experiments and in vivo imaging experiments were performed to assess the results of in vitro experiments. Results. We found that JPHYD could inhibit the proliferation, invasion, and migration of hepatocellular carcinoma cells and JPHYD decreased the level of N-cadherin, Snail, Vimentin, Smad3, and Zeb1 and increased E-cadherin and Smad7 proteins. The expression of miR-21-5p was increased while that protein of Smad7 was decreased in HCC tissues. The vivo experiments also showed that miR-21-5p could promote the migration of HCC cells. JPHYD decreased miR-21-5p expression. The same results have been found in animal studies. Conclusion. Our results indicated that JPHYD inhibited epithelial-mesenchymal transition by increasing Smad7 expression and inhibiting miR-21-5p. Therefore, blocking the occurrence and development of EMT may be a new mechanism of JPHYD’s anti-liver cancer effect.
Collapse
|
17
|
Li Y, Zhang C, Ma X, Yang L, Ren H. Identification of the potential mechanism of Radix pueraria in colon cancer based on network pharmacology. Sci Rep 2022; 12:3765. [PMID: 35260672 PMCID: PMC8904787 DOI: 10.1038/s41598-022-07815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Radix Puerariae (RP), a dry root of Pueraria lobata (Willd.) Ohwi, is used to treat a variety of diseases, including cancer. Several in vitro and in vivo studies have demonstrated the efficacy of RP in the treatment of colon cancer (CC). However, the biological mechanism of RP in the treatment of colon cancer remains unclear. In this study, the active component of RP and its potential molecular mechanism against CC were studied by network pharmacology and enrichment analysis. The methods adopted included screening active ingredients of Chinese medicine, predicting target genes of Chinese medicine and disease, constructing of a protein interaction network, and conducting GO and KEGG enrichment analysis. Finally, the results of network pharmacology were further validated by molecular docking experiments and cell experiments. Eight active constituents and 14 potential protein targets were screened from RP, including EGFR, JAK2 and SRC. The biological mechanism of RP against CC was analysed by studying the relationship between active components, targets, and enrichment pathways. These findings provide a basis for understanding the clinical application of RP in CC.
Collapse
Affiliation(s)
- Yi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, People's Republic of China
| | - Chunli Zhang
- Department of General Surgery, The People's Hospital of Zhengzhou, Henan, China
| | - Xiaohan Ma
- The Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Liuqing Yang
- Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Huijun Ren
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
18
|
Zhao J, Wang Y, Su H, Su L. Non-coding RNAs as biomarkers for hepatocellular carcinoma-A systematic review. Clin Res Hepatol Gastroenterol 2021; 45:101736. [PMID: 34146723 DOI: 10.1016/j.clinre.2021.101736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy in the world and the fourth leading cause of cancer-related death, and its incidence is increasing globally. Despite significant advances in treatment strategies for HCC, the prognosis is still poor due to its high recurrence rate. Therefore, there is an urgent need to understand the pathogenesis of HCC and further develop new therapies to improve the prognosis and quality of life of HCC patients. MicroRNAs (miRNAs, miRs) are small non-coding RNAs involved in post-transcriptional regulation of gene expression that is abnormally expressed in cancer-associated genomic regions or vulnerable sites. More and more findings have shown that miRNAs are important regulatory factors of mRNA expression in HCC, and they are receiving more and more attention as a possible key biomarker of HCC. This review mainly summarizes the potential applied value on miRNAs as diagnostic, drug resistant, prognostic, and therapeutic biomarkers in the diagnosis, therapy, and prognosis of HCC. Also, we summarize the research value of long non-coding RNA (lncRNAs), circular RNAs (circRNAs), and miRNAs network in HCC as novel biomarkers, aiming at providing some references for the therapy of HCC.
Collapse
Affiliation(s)
- Jinying Zhao
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| | - Yanhua Wang
- Department of Morphology, Medical College of China Three Gorges University, Yichang, China.
| | - Huahua Su
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| | - Lijia Su
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| |
Collapse
|
19
|
Zhang S, Long F, Lin H, Wang X, Jiang G, Wang T. Regulatory roles of phytochemicals on circular RNAs in cancer and other chronic diseases. Pharmacol Res 2021; 174:105936. [PMID: 34653635 DOI: 10.1016/j.phrs.2021.105936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022]
Abstract
As novel non-coding RNAs (ncRNAs), circular RNAs (circRNAs) play an essential role in the pathogenesis of many chronic diseases, and the regulation of these functional molecules has become a research hotspot gradually. Within the past decade, phytochemicals were reported to regulate the expression of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in various chronic diseases, and more recently, most studies focus on the regulatory roles of phytochemicals on circRNAs. Abnormal expression of circRNAs has been identified in chronic diseases like cancer, heart failure, depression and atherosclerosis, and numerous studies have revealed the modulation of circRNAs by phytochemicals including berberine, celastrol, cinnamaldehyde, curcumin, et al. The expression of circRNAs, such as circSATB2 and circFOXM1, were modulated by phytochemicals, and these regulations further affected cell proliferation, apoptosis, migration, invasion, autophagy, chemosensitivity, radiosensitivity and other biological processes. Mechanismly, the circRNAs mainly functioned as miRNA sponge, subsequently affecting miRNA-mediated regulation of target genes and related cell signaling pathways. In this review, we summarized the impact of phytochemicals on circRNAs expression and biological function, and discussed the mechanisms underlying phytochemicals regulating circRNAs in cancer and other chronic diseases.
Collapse
Affiliation(s)
- Shasha Zhang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Jiang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
20
|
MicroRNAs in Epithelial-Mesenchymal Transition Process of Cancer: Potential Targets for Chemotherapy. Int J Mol Sci 2021; 22:ijms22147526. [PMID: 34299149 PMCID: PMC8305963 DOI: 10.3390/ijms22147526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, a kind of small non-coding RNA molecules, called as microRNAs, has been applied as negative regulators in various types of cancer treatment through down-regulation of their targets. More recent studies exert that microRNAs play a critical role in the EMT process of cancer, promoting or inhibiting EMT progression. Interestingly, accumulating evidence suggests that pure compounds from natural plants could modulate deregulated microRNAs to inhibit EMT, resulting in the inhibition of cancer development. This small essay is on the purpose of demonstrating the significance and function of microRNAs in the EMT process as oncogenes and tumor suppressor genes according to studies mainly conducted in the last four years, providing evidence of efficient target therapy. The review also summarizes the drug candidates with the ability to restrain EMT in cancer through microRNA regulation.
Collapse
|
21
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
22
|
Tumor cells derived-extracellular vesicles transfer miR-3129 to promote hepatocellular carcinoma metastasis by targeting TXNIP. Dig Liver Dis 2021; 53:474-485. [PMID: 33563583 DOI: 10.1016/j.dld.2021.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most predominant primary liver cancer. Extracellular vesicles (EV)-mediated microRNA (miRNA) delivery is critical in cancer metastasis. We aimed to identify the mechanism of HCC cell-derived EVs-mediated miR-3129 in HCC. METHODS After EVs isolation and identification, miR-3129 expression in plasma EVs was evaluated and its diagnostic efficiency was analyzed. miR-3129 inhibitor was transfected into HepG2 and SMMC7721 cells, and cell malignant episodes were assessed. HCC cells were incubated with EVs from MHCC-97H cells and transfected with miR-3129 inhibitor and/or TXNIP. The nude mice were injected with MHCC-97H cells-EV or MHCC-97H cells-EV/miR-3129 inhibitor, and HCC growth and metastasis were assessed. RESULTS miR-3129 was highly expressed in plasma EVs from HCC patients, which was the essential diagnostic biomarker for HCC. miR-3129 downregulation inhibited the malignant episodes of HCC cells. MHCC-97H cell-EVs were absorbed by HCC cells and transferred miR-3129 to HCC cells. EVs-carried miR-3129 promoted malignant episodes of HCC cells, which were weakened by miR-3129 inhibition in EVs. miR-3129 targeted TXNIP. TXNIP overexpression averted the effect of EVs-carried miR-3129 in HCC. In vivo, MHCC-97H cell-EVs transferred miR-3129 to facilitate HCC growth and metastasis. CONCLUSION MHCC-97H cell-EVs transferred miR-3129 to promote HCC metastasis by targeting TXNIP.
Collapse
|
23
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
24
|
Ghafouri-Fard S, Honarmand Tamizkar K, Hussen BM, Taheri M. MicroRNA signature in liver cancer. Pathol Res Pract 2021; 219:153369. [PMID: 33626406 DOI: 10.1016/j.prp.2021.153369] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Liver cancer is the 7th utmost frequent neoplasm and the 4th principal source of cancer deaths. This malignancy is linked with several environmental and lifestyle-related factors emphasizing the role of epigenetics in its pathogenesis. MicroRNAs (miRNAs) have been regarded as potent epigenetic mechanisms partaking in the pathogenesis of liver cancer. Dysregulation of miRNAs has been related with poor outcome of patients with liver cancer. In the current manuscript, we provide a concise review of the results of recent studies about the role of miRNAs in the progression of liver cancer and their diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Li C, Wu Q, Li Z, Wang Z, Tu Y, Chen C, Sun S, Sun S. Exosomal microRNAs in cancer-related sarcopenia: Tumor-derived exosomal microRNAs in muscle atrophy. Exp Biol Med (Maywood) 2021; 246:1156-1166. [PMID: 33554647 DOI: 10.1177/1535370221990322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated sarcopenia is a complex metabolic syndrome marked by muscle mass wasting. Muscle wasting is a serious complication that is a primary contributor to cancer-related mortality. The underlying molecular mechanisms of cancer-associated sarcopenia have not been completely described to date. In general, evidence shows that the main pathophysiological alterations in sarcopenia are associated with the degradation of cellular components, an exceptional inflammatory secretome and mitochondrial dysfunction. Importantly, we highlight the prospect that several miRNAs carried by tumor-derived exosomes that have shown the ability to promote inflammatory secretion, activate catabolism, and even participate in the regulation of cellular degradation pathways can be delivered to and exert effects on muscle cells. In this review, we aim to describe the current knowledge about the functions of exosomal miRNAs in the induction of cancer-associated muscle wasting and propose potential treatment strategies.
Collapse
Affiliation(s)
- Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| |
Collapse
|
26
|
Zhou Y, Qiao H, Liu L, Dong P, Zhu F, Zhang J, Liu L, Liu L. miR-21 regulates osteogenic and adipogenic differentiation of BMSCs by targeting PTEN. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:568-576. [PMID: 34854397 PMCID: PMC8672397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore the effects and mechanism of miR-21 on the osteogenic/adipogenic differentiation of mouse BMSCs. METHODS The bilateral ovaries of C57BL/6J mice (n=24) were removed to construct an osteoporosis model. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-21, osteogenic/adipogenic genes, and PTEN. ALP and ARS and ORO staining were used to detect the formation of calcium nodules and lipid droplets in BMSCs. Western blot was used to detect the expression of PTEN. RESULTS miR-21 was significantly down-regulated in osteoporotic mice. The expression of miR-21 was significantly up-regulated after the osteogenic induction of BMSCs, and the expression of miR-21 was significantly down-regulated after the adipogenic induction. Overexpression of miR-21 significantly promoted the osteogenic differentiation of BMSCs and inhibits the adipogenic differentiation of BMSCs. CONCLUSION MiR-21 can promote osteogenic differentiation of BMSCs and inhibit their adipogenic differentiation by negatively regulating PTEN.
Collapse
Affiliation(s)
- Yongtao Zhou
- Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China,Corresponding author: Yongtao Zhou, Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, No.37, Zhonghua West Road, Qiqihar 161000, China E-mail:
| | - Hongwang Qiao
- Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lili Liu
- Department of Hemodialysis, Qiqihar Jian Hua Hospital, Qiqihar, China
| | - Ping Dong
- Department of Orthopedic Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Fangxu Zhu
- Cancer 2 Word, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jiawen Zhang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liping Liu
- Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Li Liu
- Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
27
|
Xu X, Liu M, Yang Y, Wei C, Zhang X, Song H, Wang Y, Duan X. VSP‑17 suppresses the migration and invasion of triple‑negative breast cancer cells through inhibition of the EMT process via the PPARγ/AMPK signaling pathway. Oncol Rep 2020; 45:975-986. [PMID: 33650675 PMCID: PMC7859999 DOI: 10.3892/or.2020.7916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023] Open
Abstract
VSP-17, a novel peroxisome proliferator-activated receptor γ (PPARγ) agonist, has been previously demonstrated to suppress the metastasis of triple-negative breast cancer (TNBC) by upregulating the expression levels of E-cadherin, which is a key marker of epithelial-mesenchymal transition (EMT). However, the mechanism of action of VSP-17, in particular whether it may be associated with the EMT process, remains unknown. The present study investigated the ability of VSP-17 to inhibit the invasiveness and migratory ability of TNBC cell lines (MDA-MB-231 and MDA-MB-453) performed in in vitro experiments. including cell migration assay, cell invasion assay, cell transfection, RT-qPCR, western blot (WB) analysis and immunofluorescence. The present study aimed to ascertain whether and how the PPARγ/AMP-activated protein kinase (AMPK) signaling pathway serves a role in the inhibitory effects of VSP-17 on cell migration and invasion. The results revealed that both treatment with compound C (an AMPK inhibitor) and transfection with small interfering RNA (si)AMPK notably diminished the inhibitory effect of VSP-17 treatment on the migration and invasion of MDA-MB-231 and MDA-MB-453 cells, indicating that VSP-17 may, at least partly, exert its effects via AMPK. Furthermore, both compound C and siAMPK markedly diminished the VSP-17-induced downregulation of vimentin expression levels and upregulation of E-cadherin expression levels, further indicating that the VSP-17-induced inhibition of the EMT process may be dependent on AMPK. The combination of GW9662 (a PPARγ antagonist) or siPPARγ diminished the inhibitory effect of VSP-17 treatment on the migration and invasion of the TNBC cells, indicating that PPARγ may serve an important role in the VSP-17-induced inhibition of the migration and invasion of TNBC cells. In addition, both GW9662 and siPPARγ significantly reversed the VSP-17-induced downregulation of vimentin expression levels and upregulation of E-cadherin expression levels, implying that the VSP-17-induced inhibition of the EMT process may be dependent on PPARγ. VSP-17 treatment also upregulated the expression levels of p-AMPK, which could be reversed by either GW9662 or siPPARγ, indicating that the VSP-17-induced activation of the AMPK signaling pathway was PPARγ-dependent. In conclusion, the findings of the present study indicated that VSP-17 treatment may inhibit the migration and invasion of TNBC cells by suppressing the EMT process via the PPARγ/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiaotian Xu
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Meng Liu
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yingying Yang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Chengqiong Wei
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiyang Zhang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Hengzhi Song
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yuhui Wang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiaoqun Duan
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
28
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|