1
|
de Oliveira AS, Convento MB, Razvickas CV, Castino B, Leme AM, da Silva Luiz R, da Silva WH, da Glória MA, Guirão TP, Bondan E, Schor N, Borges FT. The Nephroprotective Effects of the Allogeneic Transplantation with Mesenchymal Stromal Cells Were Potentiated by ω3 Stimulating Up-Regulation of the PPAR-γ. Pharmaceuticals (Basel) 2023; 16:1484. [PMID: 37895955 PMCID: PMC10610511 DOI: 10.3390/ph16101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) obtained from bone marrow are a promising tool for regenerative medicine, including kidney diseases. A step forward in MSCs studies is cellular conditioning through specific minerals and vitamins. The Omega-3 fatty acids (ω3) are essential in regulating MSCs self-renewal, cell cycle, and survival. The ω3 could act as a ligand for peroxisome proliferator-activated receptor gamma (PPAR-γ). This study aimed to demonstrate that ω3 supplementation in rats could lead to the up-regulation of PPAR-γ in the MSCs. The next step was to compare the effects of these MSCs through allogeneic transplantation in rats subjected to unilateral ureteral obstruction (UUO). Independent of ω3 supplementation in the diet of the rats, the MSCs in vitro conserved differentiation capability and phenotypic characteristics. Nevertheless, MSCs obtained from the rats supplemented with ω3 stimulated an increase in the expression of PPAR-γ. After allogeneic transplantation in rats subjected to UUO, the ω3 supplementation in the rats enhanced some nephroprotective effects of the MSCs through a higher expression of antioxidant enzyme (SOD-1), anti-inflammatory marker (IL-10), and lower expression of the inflammatory marker (IL-6), and proteinuria.
Collapse
Affiliation(s)
- Andreia Silva de Oliveira
- Translational Medicine Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil;
| | - Márcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Clara Versolato Razvickas
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Bianca Castino
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil;
| | - Ala Moana Leme
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Rafael da Silva Luiz
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Wesley Henrique da Silva
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Maria Aparecida da Glória
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Tatiana Pinotti Guirão
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Eduardo Bondan
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, Brazil;
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil;
| |
Collapse
|
2
|
Chen M, Gu X. Emerging roles of proximal tubular endocytosis in renal fibrosis. Front Cell Dev Biol 2023; 11:1235716. [PMID: 37799275 PMCID: PMC10547866 DOI: 10.3389/fcell.2023.1235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Endocytosis is a crucial component of many pathological conditions. The proximal tubules are responsible for reabsorbing the majority of filtered water and glucose, as well as all the proteins filtered through the glomerular barrier via endocytosis, indicating an essential role in kidney diseases. Genetic mutations or acquired insults could affect the proximal tubule endocytosis processes, by disturbing or overstressing the endolysosomal system and subsequently activating different pathways, orchestrating renal fibrosis. This paper will review recent studies on proximal tubular endocytosis affected by other diseases and factors. Endocytosis plays a vital role in the development of renal fibrosis, and renal fibrosis could also, in turn, affect tubular endocytosis.
Collapse
Affiliation(s)
- Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medicine, Shanghai Hospital of Civil Aviation Administration of China, Shanghai, China
| |
Collapse
|
3
|
Kim KP, Williams CE, Lemmon CA. Cell-Matrix Interactions in Renal Fibrosis. KIDNEY AND DIALYSIS 2022; 2:607-624. [PMID: 37033194 PMCID: PMC10081509 DOI: 10.3390/kidneydial2040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is a hallmark of end-stage chronic kidney disease. It is characterized by increased accumulation of extracellular matrix (ECM), which disrupts cellular organization and function within the kidney. Here, we review the bi-directional interactions between cells and the ECM that drive renal fibrosis. We will discuss the cells involved in renal fibrosis, changes that occur in the ECM, the interactions between renal cells and the surrounding fibrotic microenvironment, and signal transduction pathways that are misregulated as fibrosis proceeds. Understanding the underlying mechanisms of cell-ECM crosstalk will identify novel targets to better identify and treat renal fibrosis and associated renal disease.
Collapse
Affiliation(s)
- Kristin P. Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Caitlin E. Williams
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
4
|
Dai R, Zhang L, Jin H, Wang D, Cheng M, Sang T, Peng C, Li Y, Wang Y. Autophagy in renal fibrosis: Protection or promotion? Front Pharmacol 2022; 13:963920. [PMID: 36105212 PMCID: PMC9465674 DOI: 10.3389/fphar.2022.963920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a process that degrades endogenous cellular protein aggregates and damaged organelles via the lysosomal pathway to maintain cellular homeostasis and energy production. Baseline autophagy in the kidney, which serves as a quality control system, is essential for cellular metabolism and organelle homeostasis. Renal fibrosis is the ultimate pathological manifestation of progressive chronic kidney disease. In several experimental models of renal fibrosis, different time points, stimulus intensities, factors, and molecular mechanisms mediating the upregulation or downregulation of autophagy may have different effects on renal fibrosis. Autophagy occurring in a single lesion may also exert several distinct biological effects on renal fibrosis. Thus, whether autophagy prevents or facilitates renal fibrosis remains a complex and challenging question. This review explores the different effects of the dual regulatory function of autophagy on renal fibrosis in different renal fibrosis models, providing ideas for future work in related basic and clinical research.
Collapse
Affiliation(s)
- Rong Dai
- Department of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Zhang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hua Jin
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Dong Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Tian Sang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Chuyi Peng
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Li
- Blood Purification Center, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Yiping Wang,
| |
Collapse
|