1
|
M. E. Elkhalifa A, Ali SI, Nabi SU, Bashir I, Taifa S, Rakhshan R, Shah IH, Mir MA, Malik M, Ramzan Z, Nazar M, Bashir N, Ahad S, Khursheed I, Elamin E, Bazie EA, Alzerwi NA, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alsultan A, Alzahrani AM. Modulation of immune cum inflammatory pathway by earthworm granulation tissue extract in wound healing of diabetic rabbit model. Heliyon 2024; 10:e24909. [PMID: 38333811 PMCID: PMC10850419 DOI: 10.1016/j.heliyon.2024.e24909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Regeneration is a rare occurrence in the animal kingdom, but the earthworm stands out as a remarkable example of this phenomenon. Recent research has highlighted the promising wound healing properties of extracts derived from earthworms. Therefore, we propose that earthworm granulation tissue extract (EGTE) may facilitate wound healing by regulating immune responses in a rabbit diabetic wound model. Electron microscopy reveals that 70 % EGTE possesses noteworthy porosity with spherical to irregularly oval configuration. Gas chromatography-mass spectrometry (GC-MS) Characterization of EGTE revealed higher levels of ergosta-5,7,22-trien-3-ol, (3. beta.,22E). In-Vitro studies revealed significant anti-oxidant, anti-inflammatory and anti-bacterial properties in dose dependent manner. Likewise, cytotoxicity assessments reveal that 70 % EGTE exhibits minimal harm to cells while displaying substantial antioxidant and anti-inflammatory activities. For In-Vivo studies excision wounds were created on the dorsal regions of the experimental animals and were divided as Group I (50 % EGTE), Group II (70 % EGTE), Group III (vehicle) and Group IV (distilled water). Over a 21-day observation period 70 % EGTE facilitated the early healing of wounds in the experimental animals, evident through prompt wound closure, granulation tissue formation, increased DNA content, enhanced tensile strength of the wound area and enhanced the expression/synthesis of wound healing markers/proteins. From these results it can be postulated that EGTE accelerates wound healing by immune modulation, dampening of inflammatory pathway and enhanced expression of growth markers. Henceforth making it promising candidate for therapeutic use in diabetic wound healing.
Collapse
Affiliation(s)
- Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Imran Bashir
- Department of Sheep Husbandry, Srinagar, Jammu & Kashmir, 190006, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Mehak Nazar
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, 191201, Nunar, Ganderbal, Jammu & Kashmir, India
| | - Elham Elamin
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Nasser A.N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City in Riyadh, Makkah Al Mukarramah Rd, As Sulimaniyah, Saudi Arabia
| | - Fares Rayzah
- Department of Surgery, Aseer Central Hospital, Abha, Saudi Arabia
| | - Yaser Baksh
- Department of Surgery, Al-Iman General Hospital, Riyadh, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ahmed M. Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah, 11952, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
ZABIHI A, PASHAPOUR S, MAHMOODI M. Cell Therapy and Investigation of the Angiogenesis of Fibroblasts with Collagen Hydrogel on the Healing of Diabetic Wounds. Turk J Pharm Sci 2023; 20:302-309. [PMID: 37933815 PMCID: PMC10631366 DOI: 10.4274/tjps.galenos.2022.62679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022]
Abstract
Objectives A diabetic ulcer is a common disease in patients with diabetes. Because of antibiotic resistance, new therapeutic alternatives are being considered in diabetic foot patients to reduce complications and mortality. This study aimed to evaluate the effect of collagen hydrogel on the wound-healing process in diabetic rats. Materials and Methods Diabetic wounds were induced with streptozotocin in all 42 male Wistar rats. The rats were divided into four groups: (a) treated with fibroblast cells, (b) collagen hydrogel, (c) collagen cultured with fibroblast cells, and (d) a control group. Microscopic and histological (hematoxylin and eosin staining and Mason trichrome staining), measurement of wound surface with image J, skin density and thickness by the ultrasound probe, and skin elasticity with cytometer tool were used to evaluate wound healing at days 14 and 21 after the treatment. Results The results showed that treating diabetic wounds with fibroblasts cultured in collagen hydrogel greatly reduces inflammatory responses in the skin tissue and significantly accelerates the healing process. In addition, 21 days after the start of treatment, skin elasticity, thickness, and density were higher in the collagen + fibroblast group than in the control group. Conclusion In addition, the results of the present study show that diabetic wound dressing can significantly reduce the inflammatory phase in the wound healing process by increasing the speed of collagen synthesis, skin density and elasticity, and angiogenesis.
Collapse
Affiliation(s)
- Abbas ZABIHI
- Islamic Azad University Faculty of Basic Sciences, Department of Biology, Hamedan, Iran
| | - Sanaz PASHAPOUR
- Tehran Medical Sciences Faculty of Pharmacy and Pharmaceutical Sciences; Islamic Azad University, Department of Pharmacology and Toxicology, Tehran, Iran
| | - Minoo MAHMOODI
- Islamic Azad University Faculty of Basic Sciences, Department of Biology, Hamedan, Iran
| |
Collapse
|
3
|
Ma C, Li X, Ding W, Zhang X, Chen H, Feng Y. Effects of hTERT transfection on the telomere and telomerase of Periplaneta americana cells in vitro. AMB Express 2023; 13:118. [PMID: 37864620 PMCID: PMC10590340 DOI: 10.1186/s13568-023-01624-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023] Open
Abstract
Telomere and telomerase are crucial factors in cell division and chromosome stability. Telomerase activity in most cells depends on the transcription control by the telomerase reverse transcriptase (TERT). The introduction of an exogenous human TERT (hTERT) in cultured cells could enhance telomerase activity and elongate the lifespan of various cells. Telomere elongation mechanisms vary between insects and are complex and unusual. Whether the use of exogenous hTERT can immortalize primary insect cells remains to be investigated. In this study, we used a recombinant virus expressing hTERT to infect primary cultured cells of Periplaneta americana and evaluated its effects on insect cell immortalization. We found that hTERT was successfully expressed and promoted the growth of P. americana cells, shortening their doubling time. This was due to the ability of hTERT to increase the activity of telomerase in P. americana cells, thus prolonging the telomeres. Our study lays the foundation for understanding the mechanisms of telomere elongation in P. americana, and suggests that the introduction of hTERT into insect cells could be an efficient way to establish certain insect cell lines.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
- Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Weifeng Ding
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China.
| | - Hang Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| |
Collapse
|
4
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
5
|
Mi Y, Zhong L, Lu S, Hu P, Pan Y, Ma X, Yan B, Wei Z, Yang G. Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115066. [PMID: 35122975 DOI: 10.1016/j.jep.2022.115066] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxytropis falcata Bunge is a legume distributed in Northwest China, which is mainly used to treat knife wounds and inflammation. Quercetin is a bioactive flavonoid in O. falcata and becomes a promising healing compound for its angiogenic and anti-inflammatory activities. However, the healing mechanism of quercetin in cutaneous wound remains elusive. AIM OF THE STUDY The purpose of this study was to evaluate the healing effect of quercetin on cutaneous wound models in vivo and in vitro, and to reveal the Wnt/β-catenin pathway and Telomerase reverse transcriptase (TERT) involved mechanisms. MATERIALS AND METHODS The effects of quercetin on the proliferation and migration of 4 kinds of skin cells were determined by CCK-8 and scratch assay. The wound-healing capacity of quercetin was evaluated in cutaneous wound model of C57BL/6 mice and the wound healing degree was observed by histological staining. The expressions of inflammatory factors, growth factors and the related proteins were detected via Western blot and RT-qPCR analyses. The molecular docking was adopted to evaluate the binding ability of quercetin and TERT. RESULTS Quercetin could promote both proliferation and migration of fibroblasts, and enhance cutaneous wound healing capacity in mice. Compared to the control group, the wound healing rates in low (1.5 mg/mL), medium (3.0 mg/mL) and high dose (6.0 mg/mL) quercetin groups reached 94.67%, 97.31% and 98.42%, respectively. Moreover, the dermal structure in quercetin treated mice restored normal and the content of collagen fiber became abundant after administration. The levels of inflammatory factors, including tumor necrosis factor-α, interleukin-1β and interleukin-6 were significantly reduced after quercetin administration. Among which, the level of IL-1β in cutaneous wound was 0.007 times higher than that of the control group when treated with quercetin of high dose (6.0 mg/mL). The improved level of GSH in quercetin treated cutaneous wounds also indicated its higher antioxidant ability. In addition, dose-dependent positive associations were found in the expression levels of vascular endothelial growth factor, fibroblast growth factor and alpha smooth muscle actin in quercetin treated cutaneous wounds. The significantly upregulated protein levels of Wnt and β-catenin further indicated the important role of quercetin in promoting wound healing in mice. According to molecular docking analysis, the formed hydrogen bonds between quercetin and Ala195, Gln308, Asn369 and Lys372 residues of TERT also indicated the indispensable role of TERT in improving wound healing capacity. CONCLUSION Quercetin effectively promoted cutaneous wound healing by enhancing the proliferation and migration of fibroblasts, as well as inhibiting inflammation and increasing the expression of growth factors in mice via Wnt/β-catenin signaling pathway and TERT. It provides a basis for a more thorough understanding of mechanism of action of O. falcata Bunge in the treatment of knife wounds and burns.
Collapse
Affiliation(s)
- Yuhui Mi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Lei Zhong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Saijian Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| | - Xuelin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Binghui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|