1
|
Liu Z, Lu W, Zou W, Gao Y, Li X, Xu G, So KF, McIntyre RS, Lin K, Shao R. A Preliminary Study of Brain Developmental Features of Bipolar Disorder Familial Risk and Subthreshold Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00163-0. [PMID: 38909895 DOI: 10.1016/j.bpsc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Risk for bipolar disorder (BD) is increased among individuals with a family history or subthreshold mood symptoms. However, the brain structural developments associated with these BD risks remain unknown. METHODS This longitudinal cohort study examined the brain gray matter volume (GMV) developmental features of familial and symptomatic risks for BD and their associations with participants' global function levels. We recruited unaffected BD offspring with (n = 26, 14 female, mean ± SD age = 14.9 ± 2.9 years) or without (n = 35, 19 female, age = 15.3 ± 2.7 years) subthreshold manic or depressive symptoms and unaffected non-BD offspring with (n = 49, 30 female, age = 14.5 ± 2.2 years) or without (n = 68, 37 female, age = 15.0 ± 2.3 years) symptoms. The offspring had no mood disorder diagnosis prior to the study. The average follow-up duration was 2.63 ± 1.63 years. RESULTS At baseline, we found significant interactive effects of familial risk and subthreshold symptoms that indicated that the symptomatic offspring exhibited markedly large GMV in the brain affective and cognitive circuitries. During follow-up, the combined group of BD offspring (symptomatic and nonsymptomatic) displayed a more accelerated GMV decrease than BD nonoffspring in the hippocampus and anterior cingulate cortex. In contrast, the combined group of symptomatic participants (offspring and nonoffspring) displayed a slower GMV decrease than nonsymptomatic participants in the ventromedial prefrontal cortex. Larger GMV at baseline and accelerated GMV decrease during follow-up prospectively and longitudinally predicted positive global function changes. All results survived multiple testing correction. CONCLUSIONS These findings indicated that familial and symptomatic risks of BD are associated with distinct brain structural developments and unraveled key brain developmental features of particularly vulnerable high-risk individuals to subsequent functional deterioration.
Collapse
Affiliation(s)
- Zhongwan Liu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenjin Zou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Radiology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yanling Gao
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoyue Li
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guiyun Xu
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kwok-Fai So
- Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, People's Republic of China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, People's Republic of China
| | - Roger S McIntyre
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Robin Shao
- Department of Affective Disorder, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
2
|
Zhang L, Ding Y, Li T, Li H, Liu F, Li P, Zhao J, Lv D, Lang B, Guo W. Similar imaging changes and their relations to genetic profiles in bipolar disorder across different clinical stages. Psychiatry Res 2024; 335:115868. [PMID: 38554494 DOI: 10.1016/j.psychres.2024.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Bipolar disorder (BD) across different clinical stages may present shared and distinct changes in brain activity. We aimed to reveal the neuroimaging homogeneity and heterogeneity of BD and its relationship with clinical variables and genetic variations. In present study, we conducted fractional amplitude of low-frequency fluctuations (fALFF), functional connectivity (FC) and genetic neuroimaging association analyses with 32 depressed, 26 manic, 35 euthymic BD patients and 87 healthy controls (HCs). Significant differences were found in the bilateral pre/subgenual anterior cingulate cortex (ACC) across the four groups, and all bipolar patients exhibited decreased fALFF values in the ACC when compared to HCs. Furthermore, positive associations were significantly observed between fALFF values in the pre/subgenual ACC and participants' cognitive functioning. No significant changes were found in ACC-based FC. We identified fALFF-alteration-related genes in BD, with enrichment in biological progress including synaptic and ion transmission. Taken together, abnormal activity in ACC is a characteristic change associated with BD, regardless of specific mood stages, serving as a potential neuroimaging feature in BD patients. Our genetic neuroimaging association analysis highlights possible heterogeneity in biological processes that could be responsible for different clinical stages in BD.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tingting Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dongsheng Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot 010010, China.
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
3
|
Guglielmo R, Miskowiak KW, Hasler G. Evaluating endophenotypes for bipolar disorder. Int J Bipolar Disord 2021; 9:17. [PMID: 34046710 PMCID: PMC8160068 DOI: 10.1186/s40345-021-00220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotypic heterogeneity is a major impediment to the elucidation of the neurobiology and genetics of bipolar disorder. Endophenotype could help in reducing heterogeneity by defining biological traits that are more direct expressions of gene effects. The aim of this review is to examine the recent literature on clinical, epidemiological, neurobiological, and genetic findings and to select and evaluate candidate endophenotypes for bipolar disorder. Evaluating putative endophenotype could be helpful in better understanding the neurobiology of bipolar disorder by improving the definition of bipolar-related phenotypes in genetic studies. In this manner, research on endophenotypes could be useful to improve psychopathological diagnostics in the long-run by dissecting psychiatric macro phenotypes into biologically valid components. MAIN BODY The associations among the psychopathological and biological endophenotypes are discussed with respect to specificity, temporal stability, heritability, familiarity, and clinical and biological plausibility. Numerous findings regarding brain function, brain structure, neuropsychology and altered neurochemical pathways in patients with bipolar disorder and their relatives deserve further investigation. Overall, major findings suggest a developmental origin of this disorder as all the candidate endophenotypes that we have been able to select are present both in the early stages of the disorder as well as in subjects at risk. CONCLUSIONS Among the stronger candidate endophenotypes, we suggest circadian rhythm instability, dysmodulation of emotion and reward, altered neuroimmune state, attention and executive dysfunctions, anterior cingulate cortex thickness and early white matter abnormalities. In particular, early white matter abnormalities could be the result of a vulnerable brain on which new stressors are added in young adulthood which favours the onset of the disorder. Possible pathways that lead to a vulnerable brain are discussed starting from the data about molecular and imaging endophenotypes of bipolar disorder.
Collapse
Affiliation(s)
- Riccardo Guglielmo
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.,Department of Neuroscience, Institute of Psychiatry, Catholic University Medical School, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gregor Hasler
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
| |
Collapse
|
4
|
Neuroanatomic and Functional Neuroimaging Findings. Curr Top Behav Neurosci 2020; 48:173-196. [PMID: 33040316 DOI: 10.1007/7854_2020_174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The search for brain morphology findings that could explain behavioral disorders has gone through a long path in the history of psychiatry. With the advance of brain imaging technology, studies have been able to identify brain morphology and neural circuits associated with the pathophysiology of mental illnesses, such as bipolar disorders (BD). Promising results have also shown the potential of neuroimaging findings in the identification of outcome predictors and response to treatment among patients with BD. In this chapter, we present brain imaging structural and functional findings associated with BD, as well as their hypothesized relationship with the pathophysiological aspects of that condition and their potential clinical applications.
Collapse
|
5
|
Genetic Predisposition and Disease Expression of Bipolar Disorder Reflected in Shape Changes of the Anterior Limbic Network. Brain Sci 2019; 9:brainsci9090240. [PMID: 31546815 PMCID: PMC6770562 DOI: 10.3390/brainsci9090240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022] Open
Abstract
Bipolar disorder (BD) is a genetically and phenotypically complex psychiatric disease. Although previous studies have suggested that the relatives of BD patients have an increased risk of experiencing affective disturbances, most relatives who have similar genotypes may not manifest the disorder. We aim to identify the neuroimaging alterations—specifically, the cortical folding structures of the anterior limbic network (ALN)—in BD patients and their siblings, compared to healthy controls. The shared alterations in patients and their siblings may indicate the hereditary predisposition of BD, and the altered cortical structures unique to BD patients may be a probe of BD expression. High-resolution, T1-weighted magnetic resonance images for 17 euthymic patients with BD, 17 unaffected siblings of BD patients, and 22 healthy controls were acquired. We categorized the cortical regions within the ALN into sulcal and gyral areas, based on the shape index, followed by the measurement of the folding degree, using the curvedness. Our results revealed that the changes in cortical folding in the orbitofrontal and temporal regions were associated with a hereditary predisposition to BD. Cortical folding structures in multiple regions of the ALN, particularly in the striatal–thalamic circuit and anterior cingulate cortex, could be used to differentiate BD patients from healthy controls and unaffected siblings. We concluded that the cortical folding structures of ALN can provide potential biomarkers for clinical diagnosis of BD and differentiation from the unaffected siblings.
Collapse
|