1
|
Delaney MA, Pushinsky AD, Cook KA, Fox K. Histologic lesions of giant African millipedes ( Archispirostreptus gigas) from a zoological institution. Vet Pathol 2023; 60:678-688. [PMID: 37401611 DOI: 10.1177/03009858231182605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Histopathologic data of millipedes are scarce. Little is known about health and disease of these invertebrates despite their exhibition at zoological institutions and use in ecotoxicological studies. In a retrospective study of 69 zoo-housed giant African millipedes (Archispirostreptus gigas) submitted between 2018 and 2021, most deaths occurred during midwinter and in 2021. The most common lesion was inflammation (n = 55; 80%). Necrosis was seen concurrently in 31 (45%) millipedes and of these, bacteria (20; 29%) and fungi (7; 10%) were detected in lesions. Inflammation was seen in the head/collum (20; 29%), hemocoel (16; 23%), and appendages (9; 13%), specifically in perivisceral fat body (42; 61%), gut (16; 23%), tracheae (26; 38%), skeletal muscle (24; 35%), and ventral nerve (17; 25%). Inflammatory cell types and patterns included agranular hemocytes (61; 88%), granular hemocytes (39; 57%), and nodulation/encapsulation (47; 68%) often accompanied by melanization. The oral cavity or gut (ingestion), spiracles (inhalation), or cuticular defects were considered plausible routes of bacterial entry. Metazoan parasites (adult nematodes: 2, 3%; trematode ova: 2, 3%; and arthropods: 1, 1%) were associated with gut necrosis and inflammation in 5 millipedes. In addition, adult nematodes were noted in the gut of 4 millipedes without lesions. Neoplasia was not detected in any millipedes. Speculatively, environmental factors may have predisposed to disease, as most deaths occurred during winter months. Disease surveillance of millipedes is critical to optimize husbandry practices in zoo populations and investigate potential impacts of environmental degradation and climate change on wild millipedes.
Collapse
Affiliation(s)
| | - Alisha D Pushinsky
- The Ohio State University, Columbus, OH
- University of Florida, Gainesville, FL
| | - Kirstin A Cook
- University of Illinois, Brookfield, IL
- University of Wisconsin-Madison, Madison, WI
| | - Kami Fox
- Fort Wayne Children's Zoo, Fort Wayne, IN
| |
Collapse
|
2
|
Rost-Roszkowska M, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Leśniewska M, Student S. Effects of short- and long-term exposure to cadmium on salivary glands and fat body of soil centipede Lithobius forficatus (Myriapoda, Chilopoda): Histology and ultrastructure. Micron 2020; 137:102915. [PMID: 32652474 DOI: 10.1016/j.micron.2020.102915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/31/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Cadmium (Cd) is the most widely studied heavy metal in terms of food-chain accumulation and contamination because it can strongly affect all environments (e.g., soil, water, air). It can accumulate in different tissues and organs and can affect the organism at different levels of organization: from organs, tissues and cells though cell organelles and structures to activation of mechanisms of survival and cell death. In soil-dwelling organisms heavy metals gather in all tissues with accumulation properties: midgut, salivary glands, fat body. The aim of this study was to describe the effects of cadmium on the soil species Lithobius forficatus, mainly on two organs responsible for gathering different substances, the fat body and salivary glands, at the ultrastructural level. Changes caused by cadmium short- and long-term intoxication, connected with cell death (autophagy, apoptosis, necrosis), and the crosstalk between them, were analyzed. Adult specimens of L. forficatus were collected in a natural environment and divided into three experimental groups: C (the control group), Cd1 (cultured in soil with 80 mg/kg of CdCl2 for 12 days) and Cd2 (cultured in soil with 80 mg/kg of CdCl2 for 45 days). Transmission electron microscopy revealed ultrastructural alterations in both of the organs analyzed (reduction in the amount of reserve material, the appearance of vacuoles, etc.). Qualitative analysis using TUNEL assay revealed distinct crosstalk between autophagy and necrosis in the fat body adipocytes, while crosstalk between autophagy, apoptosis and necrosis in the salivary glands was detected in salivary glands of the centipedes examined here. We conclude that different organs in the body can react differently to the same stressor, as well as to the same concentration and time of exposure. Different mechanisms at the ultrastructural level activate different types of cell death and with different dynamics.
Collapse
Affiliation(s)
- Magdalena Rost-Roszkowska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Chachulska-Żymełka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Małgorzata Leśniewska
- Adam Mickiewicz University, Department of General Zoology, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Sebastian Student
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, Krzywoustego 8, 44-100, Gliwice, Poland
| |
Collapse
|
3
|
Rost-Roszkowska MM, Vilimová J, Tajovský K, Chachulska-Żymełka A, Sosinka A, Kszuk-Jendrysik M, Ostróżka A, Kaszuba F. Autophagy and Apoptosis in the Midgut Epithelium of Millipedes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1004-1016. [PMID: 31106722 DOI: 10.1017/s143192761900059x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The process of autophagy has been detected in the midgut epithelium of four millipede species: Julus scandinavius, Polyxenus lagurus, Archispirostreptus gigas, and Telodeinopus aoutii. It has been examined using transmission electron microscopy (TEM), which enabled differentiation of cells in the midgut epithelium, and some histochemical methods (light microscope and fluorescence microscope). While autophagy appeared in the cytoplasm of digestive, secretory, and regenerative cells in J. scandinavius and A. gigas, in the two other species, T. aoutii and P. lagurus, it was only detected in the digestive cells. Both types of macroautophagy, the selective and nonselective processes, are described using TEM. Phagophore formation appeared as the first step of autophagy. After its blind ends fusion, the autophagosomes were formed. The autophagosomes fused with lysosomes and were transformed into autolysosomes. As the final step of autophagy, the residual bodies were detected. Autophagic structures can be removed from the midgut epithelium via, e.g., atypical exocytosis. Additionally, in P. lagurus and J. scandinavius, it was observed as the neutralization of pathogens such as Rickettsia-like microorganisms. Autophagy and apoptosis ca be analyzed using TEM, while specific histochemical methods may confirm it.
Collapse
Affiliation(s)
- M M Rost-Roszkowska
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - J Vilimová
- Department of Zoology,Charles University, Faculty of Science,Viničná 7, 128 44 Prague 2,Czech Republic
| | - K Tajovský
- Institute of Soil Biology, Biology Centre CAS,Na Sádkách 7, 370 05 České Budějovice,Czech Republic
| | - A Chachulska-Żymełka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - A Sosinka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - M Kszuk-Jendrysik
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - A Ostróżka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - F Kaszuba
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| |
Collapse
|
4
|
Rost-Roszkowska M, Vilimová J, Tajovský K, Šustr V, Sosinka A, Kszuk-Jendrysik M, Ostróżka A, Kaszuba F, Kamińska K, Marchewka A. The ultrastructure of the hepatic cells in millipedes (Myriapoda, Diplopoda). ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|