1
|
Kumosani TA, Al-Bogami TJ, Barbour EK, Yaghmoor SS, Alshareef NA, El-Say KM, Moselhy SS. Molecular docking analysis of some medicinal extracts for pro-apoptotic, antiinflammatory and antioxidative activities using HCC cell lines. Nat Prod Res 2024:1-6. [PMID: 39066556 DOI: 10.1080/14786419.2024.2383265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
We investigated the biological activities of 14 medicinal plants from Saudi Arabia as anti-inflammatory, antioxidant and anti-proliferative properties using hepatocellular carcinoma (HCC) cell lines. Hexane extracts exhibited the maximum inhibitory activities against albumin denaturation compared with those of other solvents. Baccharoides schimperi hexane extract showed the highest anti-inflammatory while Ocimum basilicum methanol extract showed significantly high hydroxyl radical scavenging activity (p < 0.001). B. schimperi methanol extract showed highest cytotoxicity and anti-proliferation activity (IC50; 25 µg/ml) in hepatocellular carcinoma cell line. Annexin V and caspase-9 activities were induced significantly (p < 0.001) by B. schimperi and the response increased in a dose dependent compared with untreated cells (p < 0.001). The docking scores showed a low docking energy binding of 2-Cyclohexylpiperidine of B. schimperi with COX-2, (-16.62 kcal/mol), high affinity for apoptotic and anti-inflammatory potency It can be concluded that, B. schimperi active ingredients as 2-Cyclohexylpiperidine and phytol contributed to its biological activity.
Collapse
Affiliation(s)
- Taha A Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bio-products for Industrial Application Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turkyah J Al-Bogami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elie K Barbour
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soonham S Yaghmoor
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bio-products for Industrial Application Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nouf A Alshareef
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid M El-Say
- Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Involvement of Cu-containing amine oxidases in the development of lung pathology in ovalbumin-induced bronchial asthma in guinea pigs. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bronchial asthma is developed as an immune response to allergen challenges accompanied by inflammation and fibrosis implicated in airway remodeling. To reveal the causative implication of Cu-containing amino oxidases semicarbazide-sensitive amine oxidase (SSAO), DAO and lysyl oxidase (LOX) in BA development we used their irreversible inhibitor semicarbazide and guinea pig model of BA induced by ovalbumin. Semicarbazide was introduced to asthmatic animals via drink or inhalation. At the 16th week after disease induction, the increase in the activity of pro-inflammatory SSAO and DAO in plasma (1.6 and 2 times, respectively) was observed. The introduction of semicarbazide to asthmatic animals via drink or inhalation significantly decreased activities of these enzymes compared to the untreated asthmatic animals. A considerable increase in IL-13 content and LOX activity in the lung tissue of asthmatic animals were observed that evidenced airway inflammation and pulmonary fibrosis development. The uptake of semicarbazide by guinea pigs with bronchial asthma led to normalization of LOX activity. Histological studies confirmed that semicarbazide attenuated morphopathological changes in the lungs of asthmatic animals. Thus, the data obtained indicate the direct participation of the studied enzymes in the progression of pathological processes in atopic bronchial asthma as well as the potential use of semicarbazide as a drug in complex anti-asthmatic therapy. Keywords: atopic bronchial asthma, histaminase/diamine oxidase, IL-13, lysyl oxidase, nitric oxide, semicarbazide, semicarbazide sensitive amine oxidase
Collapse
|
4
|
The possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in guinea pigs. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study was aimed to evaluate the possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in the guinea pigs’ trachea and lung in early and late manifestations of the allergic inflammatory process.
Materials and methods.We have studied the distribution and quantitative changes of CD3-positive lymphocytes in trachea and lung of guinea pigs using histological, immunohistochemical, statistical methods in conditions of experimental inflammatory process.
Results. Our results revealed the applicability of anti-Human monoclonal antibody CD3 (Clone SP7, «DAKO», Denmark) cross-reaction with T-cells of guinea pigs’ tracheas and lungs. The most statistically significant elevation of the number of CD3-positive lymphocytes, in comparison with the control group (p*/**<0.05), observed in the experimental group III in the late stages of experimental inflammatory process. The elevation of the number of CD3-positive lymphocytes persists even after the termination of the allergen action, which indicates the continuation of the reaction of pulmonary local adaptive immunity to the allergen.
Conclusions. The results of our study may be useful in conditions of the deficiency of guinea pig-specific tests. The immunohistochemical assessment of guinea pigs’ trachea and lungs proved the possibility to use anti-Human monoclonal antibody CD3 as a panT-cell marker in guinea pigs. We demonstrated the activation of adaptive immune response (T-cells), represented by their immunohistochemical changes, predominantly in the late stages of experimental inflammatory process.
Collapse
|
5
|
Boutahiri S, Eto B, Bouhrim M, Mechchate H, Saleh A, Al kamaly O, Drioiche A, Remok F, Samaillie J, Neut C, Gressier B, Kouoh Elombo F, Nassiri L, Zair T, Sahpaz S. Lavandula pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl and Origanum compactum Benth. Life (Basel) 2022; 12:328. [PMID: 35330079 PMCID: PMC8954779 DOI: 10.3390/life12030328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lavender aqueous extracts are widely used in the Moroccan traditional medicine for their antibacterial properties. However, previous research have generally focused on investigating the antibacterial activity of lavender essential oils. The aim of this study is to evaluate the antibacterial activity of the Moroccan Lavandula pedunculata (Mill.) Cav. aqueous extract, alone, as well as in combination with extracts of other plant species known for their antibacterial activity: Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl. and Origanum compactum Benth. We have tested the antibacterial activity of L. pedunculata, S. rosmarinus, S. lavandulifolia and O. compactum aqueous extracts individually and in combination against 34 strains using the agar dilution method. The combination effect was evaluated using the fractional inhibitory concentration (FIC). Polyphenol and tannin contents were determined using Folin-Ciocalteu reagent, and then some phenolic compounds were identified using UHPLC-MS. All the extracts displayed a large spectrum of antibacterial activity, especially against staphylococci, streptococci, Mycobacterium smegmatis and Proteus mirabilis. The minimum inhibitory concentration (MIC) values reached 0.15 ± 0.00 mg/mL for Staphylococcus warneri tested with S. lavandulifolia and 0.20 ± 0.07 mg/mL for Staphylococcus epidermidis tested with L. pedunculata or S. rosmarinus. Association of the L. pedunculata extract with S. rosmarinus, S. lavandulifolia and O. compactum showed synergistic effects (FIC ≤ 1). Moreover, the association of L. pedunculata with S. lavandulifolia was active against most of the Gram-negative strains resistant to the individual extracts. Determination of polyphenol and tannin contents showed the richness of the studied plants in these compounds. Additionally, chromatographic analysis demonstrated the high presence of rosmarinic acid in all the studied plant extracts. To our knowledge, this is the first study that shows the enhancing effect of the antibacterial activity of L. pedunculata aqueous extract combined with S. rosmarinus, S. lavandulifolia and O. compactum. These results confirm the effectiveness of the plant mixtures commonly used by traditional healers in Morocco and suggest that L. pedunculata might be used as an antibacterial agent either alone or, more efficiently, in combination with S. rosmarinus, S. lavandulifolia and O. compactum.
Collapse
Affiliation(s)
- Salima Boutahiri
- Univ. Lille, University of Liège, University of Picardie Jules Verne, JUNIA, UMRT 1158 BioEcoAgro, Specialized Metabolites of Plant Origin, F-59000 Lille, France; (S.B.); (J.S.); (S.S.)
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, Rue du Professeur Laguesse, B.P. 83, F-59000 Lille, France; (B.E.); (F.K.E.)
| | - Mohamed Bouhrim
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Firdaous Remok
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Jennifer Samaillie
- Univ. Lille, University of Liège, University of Picardie Jules Verne, JUNIA, UMRT 1158 BioEcoAgro, Specialized Metabolites of Plant Origin, F-59000 Lille, France; (S.B.); (J.S.); (S.S.)
| | - Christel Neut
- U1286 INFINITE Inst Translat Res Inflammat, University of Lille, Inserm, CHU Lille, F-59000 Lille, France;
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, F-59000 Lille, France;
| | - Ferdinand Kouoh Elombo
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, Rue du Professeur Laguesse, B.P. 83, F-59000 Lille, France; (B.E.); (F.K.E.)
| | - Laila Nassiri
- Research Team of Environment and Valorization of Plant and Microbial Resources, Faculty of Sciences, Moulay Ismaïl University, Meknes, B.P. 11201 Zitoune, Meknes 50070, Morocco;
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Sevser Sahpaz
- Univ. Lille, University of Liège, University of Picardie Jules Verne, JUNIA, UMRT 1158 BioEcoAgro, Specialized Metabolites of Plant Origin, F-59000 Lille, France; (S.B.); (J.S.); (S.S.)
| |
Collapse
|
6
|
Boutahiri S, Bouhrim M, Abidi C, Mechchate H, Alqahtani AS, Noman OM, Elombo FK, Gressier B, Sahpaz S, Bnouham M, Desjeux JF, Zair T, Eto B. Antihyperglycemic Effect of Lavandula pedunculata: In Vivo, In Vitro and Ex Vivo Approaches. Pharmaceutics 2021; 13:pharmaceutics13122019. [PMID: 34959301 PMCID: PMC8703280 DOI: 10.3390/pharmaceutics13122019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Lavandula pedunculata (Mill.) Cav. (LP) is one of lavender species traditionally used in Morocco to prevent or cure diabetes, alone or in the form of polyherbal preparations (PHP). Therefore, the primary objective of this study was to test the antihyperglycemic effect of the aqueous extract of LP, alone and in combination with Punica granatum L. (PG) and Trigonella foenum-graecum L. (FGK). The secondary objective was to explore some mechanisms of action on the digestive functions. The antihyperglycemic effect of the aqueous extract of LP, alone and in combination with PG and FGK, was studied in vivo using an oral glucose tolerance test (OGTT). In addition, LP extract was tested on the activities of some digestive enzymes (pancreatic α-amylase and intestinal α-glucosidase) in vitro and on the intestinal absorption of glucose ex vivo using a short-circuit current (Isc) technique. Acute and chronic oral administration of LP aqueous extract reduced the peak of the glucose concentration (30 min, p < 0.01) and the area under the curve (AUC, p < 0.01). The effect of LP + PG was at the same amplitude to that of the positive control Metformin (MET). LP aqueous extract inhibited the pancreatic α-amylase with an IC50 almost identical to acarbose (0.44 ± 0.05 mg/mL and 0.36 ± 0.02 mg/mL, respectively), as well as the intestinal α-glucosidase, (IC50 = 131 ± 20 µg/mL) and the intestinal glucose absorption (IC50 = 81.28 ± 4.01 µg/mL) in concentration-dependent manners. LP aqueous extract exhibited potent actions on hyperglycemia, with an inhibition on digestive enzymes and glucose absorption. In addition, the combination with PG and FGK enhanced oral glucose tolerance in rats. These findings back up the traditional use of LP in type 2 diabetes treatment and the effectiveness of the alternative and combinative poly-phytotherapy (ACPP).
Collapse
Affiliation(s)
- Salima Boutahiri
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, F-59000 Lille, France; (S.B.); (F.K.E.); (B.G.); (B.E.)
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco;
- Univ. Lille, University of Liège, University of Picardie Jules Verne, JUNIA, UMRT 1158 BioEcoAgro, Specialized Metabolites of Plant Origin, F-59000 Lille, France;
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco;
- Correspondence: (M.B.); (H.M.)
| | - Chayma Abidi
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, B.P. 382, Beja 9000, Tunisia;
| | - Hamza Mechchate
- Laboratory of Biotechnology, Environment, Agri-Food, and Health, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796, Fez 30000, Morocco
- Correspondence: (M.B.); (H.M.)
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Ferdinand Kouoh Elombo
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, F-59000 Lille, France; (S.B.); (F.K.E.); (B.G.); (B.E.)
- Laboratory de Pharmacology and Toxicology (LPT), Unit of Aromatic and Medicinal Plants Valorization, Department of Biochemistry, Faculty of Sciences, University of Yaoundé 1, Yaoundé BP 812, Cameroon
| | - Bernard Gressier
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, F-59000 Lille, France; (S.B.); (F.K.E.); (B.G.); (B.E.)
| | - Sevser Sahpaz
- Univ. Lille, University of Liège, University of Picardie Jules Verne, JUNIA, UMRT 1158 BioEcoAgro, Specialized Metabolites of Plant Origin, F-59000 Lille, France;
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco;
| | | | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco;
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, F-59000 Lille, France; (S.B.); (F.K.E.); (B.G.); (B.E.)
| |
Collapse
|
7
|
Bottoni M, Milani F, Galimberti PM, Vignati L, Romanini PL, Lavezzo L, Martinetti L, Giuliani C, Fico G. Ca' Granda, Hortus simplicium: Restoring an Ancient Medicinal Garden of XV-XIX Century in Milan (Italy). Molecules 2021; 26:6933. [PMID: 34834025 PMCID: PMC8620247 DOI: 10.3390/molecules26226933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
This work is based on the study of 150 majolica vases dated back to the mid XVII century that once preserved medicinal remedies prepared in the ancient Pharmacy annexed to the Ospedale Maggiore Ca' Granda in Milan (Lombardy, Italy). The Hortus simplicium was created in 1641 as a source of plant-based ingredients for those remedies. The main objective of the present work is to lay the knowledge base for the restoration of the ancient Garden for educational and informative purposes. Therefore, the following complementary phases were carried out: (i) the analysis of the inscriptions on the jars, along with the survey on historical medical texts, allowing for the positive identification of the plant ingredients of the remedies and their ancient use as medicines; (ii) the bibliographic research in modern pharmacological literature in order to validate or refute the historical uses; (iii) the realization of the checklist of plants potentially present in cultivation at the ancient Garden, concurrently with the comparison with the results of a previous in situ archaeobotanical study concerning pollen grains. For the species selection, considerations were made also regarding drug amounts in the remedies and pedoclimatic conditions of the study area. Out of the 150 vases, 108 contained plant-based remedies, corresponding to 148 taxa. The remedies mainly treated gastrointestinal and respiratory disorders. At least one of the medicinal uses was validated in scientific literature for 112 out of the 148 examined species. Finally, a checklist of 40 taxa, presumably hosted in the Hortus simplicium, was assembled.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paolo M. Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milan, Italy;
| | - Lucia Vignati
- Landscape Ecomuseum of Parabiago, P.za della Vittoria 7, 20015 Milan, Italy;
| | - Patrizia Luise Romanini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Luca Lavezzo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Livia Martinetti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
8
|
Azman S, Sekar M, Bonam SR, Gan SH, Wahidin S, Lum PT, Dhadde SB. Traditional Medicinal Plants Conferring Protection Against Ovalbumin-Induced Asthma in Experimental Animals: A Review. J Asthma Allergy 2021; 14:641-662. [PMID: 34163178 PMCID: PMC8214026 DOI: 10.2147/jaa.s296391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/16/2021] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the respiratory tract in which the numerous immune cells, including eosinophils, neutrophils, macrophages, T-lymphocytes, mast cells and epithelial lining play key roles. The numerous anti-asthmatic drugs are available in modern medicine to treat asthma, but they have several disadvantages, including side effects and the cost variations, which compromise treatment compliance. The literature review reveals that traditional herbal medicines have good potential as alternative treatment and management for asthma. However, communities hesitated to use the traditional herbal medicines due to lack of established mechanism of action about their anti-asthmatic potential. The present review aimed to summarise the information stated in the literature about the potential effect of traditional medicinal plants (TMPs) conferring protection against ovalbumin (OVA)-induced asthma model. The literature search was conducted in database like PubMed, Scopus, Google Scholar and ScienceDirect. After screening through the literature from 2011 to date, a total of 27 medicinal plants and two polyherbal extracts have been reported to be used as traditional herbal medicines and also utilised to be tested against OVA-induced asthma, were included. We found them to be an important alternative source of treatment for asthma, since some have comparable efficacies with drugs commonly used in the modern system against asthma. All the reported medicinal plants confirmed their traditional use against asthma or its related inflammation. The present review provides faith in traditional information and also offers new insight into the potential of natural products against asthma.
Collapse
Affiliation(s)
- Shazalyana Azman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia.,Bioengineering and Technology Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris, Paris, France
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway Selangor Darul Ehsan, 47500, Malaysia
| | - Suzana Wahidin
- Bioengineering and Technology Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | |
Collapse
|
9
|
Marinho TA, Oliveira MG, Menezes-Filho ACP, Castro CFS, Oliveira IMM, Borges LL, Melo-Reis PR, Silva-Jr NJ. Phytochemical characterization, and antioxidant and antibacterial activities of the hydroethanolic extract of Anadenanthera peregrina stem bark. BRAZ J BIOL 2021; 82:e234476. [PMID: 33681898 DOI: 10.1590/1519-6984.234476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/03/2020] [Indexed: 02/05/2023] Open
Abstract
The Brazilian Cerrado biome consists of a great variety of endemic species with several bioactive compounds, and Anadenanthera peregrina (L.) Speg is a promising species. In this study, we aimed to perform phytochemical characterization and evaluate the antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli of the hydroethanolic extract of A. peregrina stem bark. The barks were collected in the Botanical Garden of Goiânia, Brazil. The hydroethanolic extract was obtained by percolation and subjected to physicochemical screening, total phenolic content estimation, high-performance liquid chromatography (HPLC) fingerprinting, and antioxidant (IC50 values were calculated for the 2,2-diphenyl-1-picrylhydrazyl assay - DPPH) and antibacterial activity determination. The pH of the extract was 5.21 and density was 0.956 g/cm3. The phytochemical screening indicated the presence of cardiac glycosides, organic acids, reducing sugars, hemolytic saponins, phenols, coumarins, condensed tannins, flavonoids, catechins, depsides, and depsidones derived from benzoquinones. The extract showed intense hemolytic activity. The total phenolic content was 6.40 g GAE 100 g-1. The HPLC fingerprinting analysis revealed the presence of gallic acid, catechin, and epicatechin. We confirmed the antioxidant activity of the extract. Furthermore, the extract did not inhibit the growth of E. coli colonies at any volume tested, but there were halos around S. aureus colonies at all three volumes tested. These results contribute to a better understanding of the chemical composition of A. peregrina stem bark and further support the medicinal applications of this species.
Collapse
Affiliation(s)
- T A Marinho
- Universidade Federal de Goiás - UFG, Rede Pró Centro-Oeste, Programa de Pós-graduação em Biotenologia e Biodiversidade - PGBB, Goiânia, GO, Brasil.,Instituto Federal de Educação, Ciência e Tecnologia de Goiás - IFG, Núcleo de Estudos e Pesquisas em Promoção da Saúde - NUPPS, Goiânia, GO, Brasil
| | - M G Oliveira
- Universidade Federal de Goiás - UFG, Programa de Pós-graduação em Ciências Farmacêticas, Goiânia, GO, Brasil
| | - A C P Menezes-Filho
- Instituto Federal de Ciência e Tecnologia Goiano - IFGoiano, Programa de Pós-graduação em Agroquímica - PPGAq, Rio Verde, GO, Brasil
| | - C F S Castro
- Instituto Federal de Ciência e Tecnologia Goiano - IFGoiano, Programa de Pós-graduação em Agroquímica - PPGAq, Rio Verde, GO, Brasil
| | - I M M Oliveira
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Genética, Goiânia, GO, Brasil
| | - L L Borges
- Universidade Estadual de Goiás - UEG, Programa de Pós-graduação em Recursos Naturais do Cerrado - RENAC, Anápolis, GO, Brasil
| | - P R Melo-Reis
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Ciências Ambientas e Saúde, Goiânia, GO, Brasil
| | - N J Silva-Jr
- Pontifícia Universidade Católica de Goiás - PUCGO, Programa de Pós-graduação em Ciências Ambientas e Saúde, Goiânia, GO, Brasil
| |
Collapse
|
10
|
Etsassala NG, Hussein AA, Nchu F. Potential Application of Some Lamiaceae Species in the Management of Diabetes. PLANTS (BASEL, SWITZERLAND) 2021; 10:279. [PMID: 33535455 PMCID: PMC7912742 DOI: 10.3390/plants10020279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Diabetes is one of the most dangerous metabolic disorders, with high rates of mortality worldwide. Since ancient times, medicinal plants have been used in traditional medicine to treat many diseases, including diabetes and its related complications. Plants are widely accepted, affordable, and perceived to have minimal adverse side effects. The Lamiaceae family is a potential source of therapeutic agents for the management of metabolic disorders, including diabetes. Hence, this review paper summarizes the antidiabetic use of Lamiaceae species in folk medicine globally. Furthermore, we present the antidiabetic activities and phytochemical constituents of twenty-three (23) Lamiaceae species and the antidiabetic activity of some notable chemical constituents isolated from some of these Lamiaceae species.
Collapse
Affiliation(s)
- Ninon G.E.R. Etsassala
- Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, Bellville 7535, South Africa;
| | - Felix Nchu
- Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
| |
Collapse
|