1
|
Oliveira-Junior SD, Silva GL, Pessoa VA, Vasconcelos AS, Silva DF, Soares LBN, Chevreuil LR, Santos ES, Sales-Campos C. Adding-value to Ganoderma lingzhi by producing enzymes and antioxidant compounds under submerged fermentation using different culture media. BRAZ J BIOL 2024; 84:e283882. [PMID: 39383366 DOI: 10.1590/1519-6984.283882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/20/2024] [Indexed: 10/11/2024] Open
Abstract
Ganoderma lingzhi is widely reported for its medicinal properties, presenting several bioactive substances with potential pharmaceutical and industrial application. This study aimed to evaluate the production of mycelial biomass, extracellular enzymes and antioxidant compounds by G. lingzhi under submerged fermentation. G. lingzhi was cultured in Polysaccharide (POL) and Melin-Norkrans (MNM) media for 7 days. The cellulases, xylanases, pectinases, laccases, and proteases activities were quantified in the culture broth, while the antioxidant potential was evaluated for the mycelial biomass. G. lingzhi showed higher biomass production in MNM. However, it exhibited similar microstructural characteristics in both culture media. In the POL there was greater activity of CMCase (0.229 U/mL), xylanase (0.780 U/mL), pectinase (0.447 U/mL) and proteases (16.13 U/mL). FPase did not differ (0.01 U/mL), and laccase was detected only in MNM (0.122 U/mL). The biomass water extract from MNM showed high levels of phenolic compounds (951.97 mg AGE/100 g). DPPH• inhibition (90.55%) and reducing power (0.456) were higher in MNM medium, while ABTS•+ inhibition (99.95%) and chelating ability (54.86%) were higher in POL. Thus, the MNM medium was more favorable to the production of mycelial biomass and phenolic compounds, while the POL medium favored the synthesis and excretion of hydrolytic enzymes.
Collapse
Affiliation(s)
- S D Oliveira-Junior
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
| | - G L Silva
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC, Manaus, AM, Brasil
| | - V A Pessoa
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC, Manaus, AM, Brasil
| | - A S Vasconcelos
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio, Manaus, AM, Brasil
| | - D F Silva
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Programa de Pós-Graduação em Biodiversidade e Biotecnologia da rede BIONORTE - PPGBIONORTE, Manaus, AM, Brasil
| | - L B N Soares
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Programa de Pós-Graduação em Biodiversidade e Biotecnologia da rede BIONORTE - PPGBIONORTE, Manaus, AM, Brasil
| | - L R Chevreuil
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
| | - E S Santos
- Universidade Federal do Rio Grande do Norte - UFRN, Laboratório de Engenharia Bioquímica - LEB, Departamento de Engenharia Química - DEQ, Natal, RN, Brasil
| | - C Sales-Campos
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Cultivo de Fungos Comestíveis - LCFC, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Programa de Pós-Graduação em Biodiversidade e Biotecnologia da rede BIONORTE - PPGBIONORTE, Manaus, AM, Brasil
| |
Collapse
|
2
|
de Lima GG, Schoenherr ZCP, Magalhães WLE, Tavares LBB, Helm CV. Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00346-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
By seeding fungus on top of industry residues, a mycelium can grow and form a compact network structure; however, it may not develop due to lack of optimal nutrients from the substrate. Consequently, peach-palm residues can be a potential alternative; so, to test this hypothesis, this work evaluates the effect of peach-palm residues as substrate for the growth of mycelium based on Lentinula edodes. They were also supplemented with cassava bran and various sources of nitrogen-ammonium sulphate, potassium nitrate, and soy flour—to analyse its effects on its physico-chemical, enzymatic activities, and thermal and mechanical properties of the final composite at 12 and 20 days of cultivation. This mycelium was able to grow at optimum source treatment conditions, which depends on the ratio of Carbon to Nitrogen, within only 12 days of inoculation. Furthermore, the enzyme activities directly correlate with the mycelium growth with optimum conditions of pH, water activity, and moisture for L. edodes to grow having lower enzyme activities for a well-developed composite; whereas higher activities were seen for a weakly developed material, and this material demonstrates mechanical and thermal properties similar to common mycelium-based composites. Therefore, this work demonstrates that peach-palm residues can be a potential alternative for mycelium-based composite.
Collapse
|
3
|
Sun T, Yan P, Zhan N, Zhang L, Chen Z, Zhang A, Shan A. The optimization of fermentation conditions for Pichia pastoris GS115 producing recombinant xylanase. Eng Life Sci 2020; 20:216-228. [PMID: 32874185 PMCID: PMC7447871 DOI: 10.1002/elsc.201900116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Xylanase is a member of an important family of enzymes that has been used in many biotechnological processes. However, the overall cost of enzyme production has been the main problem in the industrial application of enzymes. To obtain maximum xylanase production, statistical approaches based on the Plackett-Burman design and response surface methodology were employed. The results of the statistical analyses demonstrated that the optimal conditions for increased xylanase production were the following: inoculum size, 3.8%; maize meal, 4.5%; histidine, 0.6%; methanol, 1%; culture volume, 20%; bean pulp, 30 g L-1; and Tween-80, 0.8%; and pH 5.0. Verification of the optimization demonstrated that 3273 U mL-1 xylanase was observed under the optimal conditions in shake flask experiments. SDS-PAGE results showed that the size of xylanase protein was about 23 kDa. The results showed that the xylanase produced by fermentation came from Aspergillus Niger by MALDI-TOF-MS. The optimized medium resulted in 2.1- and 1.4-fold higher the activity of xylanase compared with the unoptimized medium (the main nutrients are maize meal and bean pulp) and laboratory medium (the main nutrients are yeast extract and peptone), respectively. The optimization of fermentation conditions is an effective means to reduce production cost and improve xylanase activity.
Collapse
Affiliation(s)
- Taotao Sun
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Ping Yan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Na Zhan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Licong Zhang
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Zhihui Chen
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| | - Aizhong Zhang
- College of Animal Science & Veterinary MedicineHeilongjiang Bayi Agricultural UniversityDaqingP. R. China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal NutritionNortheast Agricultural UniversityHarbinP. R. China
| |
Collapse
|
4
|
Serbent MP, Rebelo AM, Pinheiro A, Giongo A, Tavares LBB. Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation. Appl Microbiol Biotechnol 2019; 103:5065-5078. [DOI: 10.1007/s00253-019-09838-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
5
|
Chicatto JA, Rainert KT, Gonçalves MJ, Helm CV, Altmajer-Vaz D, Tavares LBB. Decolorization of textile industry wastewater in solid state fermentation with Peach-Palm (Bactris gasipaes) residue. BRAZ J BIOL 2018; 78:718-727. [PMID: 29451607 DOI: 10.1590/1519-6984.175074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022] Open
Abstract
In this work we have assessed the decolorization of textile effluents throughout their treatment in a solid-state fermentation (SSF) system. SSF assays were conducted with peach-palm (Bactris gasipaes) residue using the white rot fungus Ganoderma lucidum EF 31. The influence of the dye concentration and of the amounts of peach-palm residue and liquid phase on both the discoloration efficiency and enzyme production was studied. According to our results, independently of experimental conditions employed, laccase was the main ligninolytic enzyme produced by G. lucidum. The highest laccase activity was obtained at very low effluent concentrations, suggesting the existence of an inhibitory effect of higher concentrations on fungal metabolism. The highest percentage of color removal was reached when 10 grams of peach palm residue was moistened with 60 mL of the final effluent. In control tests carried out with the synthetic dye Remazol Brilliant Blue R (RBBR) decolorization efficiencies about 20% higher than that achieved with the industrial effluent were achieved. The adsorption of RBBR on peach-palm residue was also investigated. Equilibrium tests showed that the adsorption of this dye followed both Langmuir and Freundlich isotherms. Hence, our experimental results indicate that peach-palm residue is suitable substrate for both laccase production and color removal in industrial effluents.
Collapse
Affiliation(s)
- J A Chicatto
- Environmental Engineering Postgraduate, Universidade Regional de Blumenau - FURB, Rua São Paulo, nº 3250, Itoupava Seca, CEP 89030-080, Blumenau, SC, Brazil
| | - K T Rainert
- Environmental Engineering Postgraduate, Universidade Regional de Blumenau - FURB, Rua São Paulo, nº 3250, Itoupava Seca, CEP 89030-080, Blumenau, SC, Brazil
| | - M J Gonçalves
- Department of Chemical Engineering, Universidade Regional de Blumenau - FURB, Rua São Paulo, nº 3250, Itoupava Seca, CEP 89030-080, Blumenau, SC, Brazil
| | - C V Helm
- National Research Center for Forestry, Embrapa Florestas, Estrada da Ribeira, Km 111, CEP 83411-000, Colombo, PR, Brazil
| | - D Altmajer-Vaz
- Department of Chemical Engineering, Universidad de Granada - UGR, Avenida del Hospicio, s/n, 18010, Granada, España
| | - L B B Tavares
- Environmental Engineering Postgraduate, Universidade Regional de Blumenau - FURB, Rua São Paulo, nº 3250, Itoupava Seca, CEP 89030-080, Blumenau, SC, Brazil
| |
Collapse
|
6
|
Pedri ZC, Lozano LMS, Hermann KL, Helm CV, Peralta RM, Tavares LBB. Influence of nitrogen sources on the enzymatic activity and grown by Lentinula edodes in biomass Eucalyptus benthamii. BRAZ J BIOL 2015; 75:940-7. [PMID: 26675911 DOI: 10.1590/1519-6984.03214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/27/2014] [Indexed: 11/22/2022] Open
Abstract
Lignocellulose is the most abundant environmental component and a renewable organic resource in soil. There are some filamentous fungi which developed the ability to break down and use cellulose, hemicellulose and lignin as an energy source. The objective of this research was to analyze the effect of three nitrogen resources (ammonium sulfate, saltpetre, soybean) in the holocellulolitic activity of Lentinula edodes EF 50 using as substrate sawdust E. benthamii. An experimental design mixture was applied with repetition in the central point consisting of seven treatments (T) of equal concentrations of nitrogen in ammonium sulfate, potassium nitrate and soybean. The enzymatic activity of avicelase, carboxymetilcellulase, β-glucosidase, xylanases and manganese peroxidase was determined. The humidity, pH, water activity (aw) and qualitative analysis of mycelial growth in 8 times of cultivation were evaluated. The results showed negative effect on enzyme production in treatments with maximum concentration of ammonium sulfate and potassium nitrate. The treatments with cooked soybean flour expressed higher enzymatic activities in times of 3, 6 and 9 days of culture, except in the activity of manganese peroxidase. The highest production was observed in the treatment with ammonium sulfate, and soybean (83.86 UI.L-1) at 20 days of cultivation.
Collapse
Affiliation(s)
- Z C Pedri
- Programa de Pós-graduação, Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | - L M S Lozano
- Departamento de Engenharia Química, Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | - K L Hermann
- Programa de Pós-graduação em Engenharia Ambiental, Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | - C V Helm
- Empresa Brasileira de Pesquisa Agropecuária, Colombo, PR, Brazil
| | - R M Peralta
- Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - L B B Tavares
- Universidade Regional de Blumenau, Blumenau, SC, Brazil
| |
Collapse
|