1
|
Dang KD, Ho CNQ, Van HD, Dinh ST, Nguyen QTT, Nguyen TTT, Kien XTN, Dao TV, Nong HV, Nguyen MT, Doan CC, Hoang SN, Nguyen TTP, Le LT. Hexavalent Chromium Inhibited Zebrafish Embryo Development by Altering Apoptosis- and Antioxidant-Related Genes. Curr Issues Mol Biol 2023; 45:6916-6926. [PMID: 37623255 PMCID: PMC10453199 DOI: 10.3390/cimb45080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
This study aimed to assess the effects of hexavalent chromium on zebrafish (Danio rerio) embryo development. The zebrafish embryos were treated with solutions containing chromium at different concentrations (0.1, 1, 3.125, 6.25, 12.5, 50, and 100 µg/mL). The development of zebrafish embryos was estimated by the determination of survival rate, heart rate, and the measurement of larvae body length. Real time RT-PCR and Western blot were performed to assess the expression of apoptosis- and antioxidant-related genes. The results showed that the reduced survival rate of zebrafish embryos and larvae was associated with an increase in chromium concentration. The exposure of higher concentrations resulted in a decrease in body length of zebrafish larvae. In addition, a marked increase in heart rate was observed in the zebrafish larvae under chromium treatment, especially at high concentrations. The real-time RT-PCR analysis showed that the transcript expressions for cell-cycle-related genes (cdk4 and cdk6) and antioxidant-related genes (sod1 and sod2) were downregulated in the zebrafish embryos treated with chromium. Western blot analysis revealed the upregulation of Caspase 3 and Bax, while a downregulation was observed in Bcl2. These results indicated that hexavalent chromium induced changes in zebrafish embryo development by altering apoptosis- and antioxidant-related genes.
Collapse
Affiliation(s)
- Khoa Dang Dang
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot City 750000, Vietnam;
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
| | - Chi Nguyen Quynh Ho
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Huy Duc Van
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh 700000, Vietnam;
| | - Son Thanh Dinh
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Quynh Thi Truc Nguyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Tram Thi Thuy Nguyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Ho Chi Minh City University of Physical Education and Sports, Ho Chi Minh 700000, Vietnam;
| | - Xuyen Thi Ngoc Kien
- Ho Chi Minh City University of Physical Education and Sports, Ho Chi Minh 700000, Vietnam;
| | - Tuyet Van Dao
- Environmental Industry Institute, Ministry of Industry and Trade, Hanoi 100000, Vietnam; (T.V.D.); (H.V.N.)
| | - Hung Viet Nong
- Environmental Industry Institute, Ministry of Industry and Trade, Hanoi 100000, Vietnam; (T.V.D.); (H.V.N.)
| | - Minh Thai Nguyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Chung Chinh Doan
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Son Nghia Hoang
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Thao Thi Phuong Nguyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Long Thanh Le
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| |
Collapse
|
2
|
Choi HW, Jang H. Application of Nanoparticles and Melatonin for Cryopreservation of Gametes and Embryos. Curr Issues Mol Biol 2022; 44:4028-4044. [PMID: 36135188 PMCID: PMC9497981 DOI: 10.3390/cimb44090276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cryopreservation of gametes and embryos, a technique widely applied in human infertility clinics and to preserve desirable genetic traits of livestock, has been developed over 30 years as a component of the artificial insemination process. A number of researchers have conducted studies to reduce cell toxicity during cryopreservation using adjuvants leading to higher gamete and embryo survival rates. Melatonin and Nanoparticles are novel cryoprotectants and recent studies have investigated their properties such as regulating oxidative stresses, lipid peroxidation, and DNA fragmentation in order to protect gametes and embryos during vitrification. This review presented the current status of cryoprotectants and highlights the novel biomaterials such as melatonin and nanoparticles that may improve the survivability of gametes and embryos during this process.
Collapse
Affiliation(s)
- Hyun-Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Hoon Jang
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-3359
| |
Collapse
|
3
|
Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae. Sci Rep 2022; 12:13632. [PMID: 35948747 PMCID: PMC9365205 DOI: 10.1038/s41598-022-17935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Shellfish aquaculture needs the development of new tools for the improvement of good practices avoiding the reliance on natural spat collection to increase production efficiently. The aim of this work was to improve the cryopreservation protocol for Mytilus galloprovincialis larvae described in Paredes et al. (in: Wolkers, Oldenhof (eds) Cryopreservation and freeze-drying protocol, methods in molecular biology, Humana Press, 2021, pp 2180, 10.1007/978-1-0716-0783-1_18). Moreover, the capability of producing adult mussels from cryopreserved 72 h-old D-larvae and potential long-term effects of cryopreservation through progenies were evaluated. The selection of 72-h old D-larvae for cryopreservation yielded 75% of recovery, higher than 50% from trochophores. The best combination was 10% Ethylene–Glycol + 0.4 M Trehalose in Filtered Sea Water (FSW) with cooling at − 1 °C/min and a water bath at 35 °C for thawing. Sucrose (SUC) solutions did not improve larval recovery (p > 0.05). At settlement, 5.26% of cryopreserved F1 larvae survived and over 70% settled. F2 cryopreservation produced 0.15% survival of spat and settlement varied from 35 to 50%. The delay of shell size showed on cryopreserved larvae declined throughout larval rearing without significant differences with controls from settlement point (p > 0.05). Long-term experiments showed that it is possible to obtain adult mussels from cryopreserved larvae and this tool does not compromise the quality of following progenies, neither for cryopreservation nor post-thawing development of them.
Collapse
|