1
|
Oliveira GF, Nascimento ACC, Azevedo CF, de Oliveira Celeri M, Barroso LMA, de Castro Sant'Anna I, Viana JMS, de Resende MDV, Nascimento M. Population size in QTL detection using quantile regression in genome-wide association studies. Sci Rep 2023; 13:9585. [PMID: 37311810 DOI: 10.1038/s41598-023-36730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The aim of this study was to evaluate the performance of Quantile Regression (QR) in Genome-Wide Association Studies (GWAS) regarding the ability to detect QTLs (Quantitative Trait Locus) associated with phenotypic traits of interest, considering different population sizes. For this, simulated data was used, with traits of different levels of heritability (0.30 and 0.50), and controlled by 3 and 100 QTLs. Populations of 1,000 to 200 individuals were defined, with a random reduction of 100 individuals for each population. The power of detection of QTLs and the false positive rate were obtained by means of QR considering three different quantiles (0.10, 0.50 and 0.90) and also by means of the General Linear Model (GLM). In general, it was observed that the QR models showed greater power of detection of QTLs in all scenarios evaluated and a relatively low false positive rate in scenarios with a greater number of individuals. The models with the highest detection power of true QTLs at the extreme quantils (0.10 and 0.90) were the ones with the highest detection power of true QTLs. In contrast, the analysis based on the GLM detected few (scenarios with larger population size) or no QTLs in the evaluated scenarios. In the scenarios with low heritability, QR obtained a high detection power. Thus, it was verified that the use of QR in GWAS is effective, allowing the detection of QTLs associated with traits of interest even in scenarios with few genotyped and phenotyped individuals.
Collapse
Affiliation(s)
- Gabriela França Oliveira
- Department of Statistics, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, 36570.900, Viçosa, Minas Gerais, Brazil.
| | - Ana Carolina Campana Nascimento
- Department of Statistics, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, 36570.900, Viçosa, Minas Gerais, Brazil
| | - Camila Ferreira Azevedo
- Department of Statistics, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, 36570.900, Viçosa, Minas Gerais, Brazil
| | - Maurício de Oliveira Celeri
- Department of Statistics, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, 36570.900, Viçosa, Minas Gerais, Brazil
| | | | - Isabela de Castro Sant'Anna
- Rubber Tree and Agroforestry Systems Research Center, Campinas Agronomy Institute (IAC), Votuporanga, São Paulo, Brazil
| | | | | | - Moysés Nascimento
- Department of Statistics, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, 36570.900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
2
|
Kou C, Peng C, Dong H, Hu L, Xu W. Mapping quantitative trait loci and developing their KASP markers for pre-harvest sprouting resistance of Henan wheat varieties in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1118777. [PMID: 36875573 PMCID: PMC9976778 DOI: 10.3389/fpls.2023.1118777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Pre-harvest Sprouting (PHS) seriously affects wheat quality and yield. However, to date there have been limited reports. It is of great urgency to breed resistance varieties via quantitative trait nucleotides (QTNs) or genes for PHS resistance in white-grained wheat. METHODS 629 Chinese wheat varieties, including 373 local wheat varieties from 70 years ago and 256 improved wheat varieties were phenotyped for spike sprouting (SS) in two environments and genotyped by wheat 660K microarray. These phenotypes were used to associate with 314,548 SNP markers for identifying QTNs for PHS resistance using several multi-locus genome-wide association study (GWAS) methods. Their candidate genes were verified by RNA-seq, and the validated candidate genes were further exploited in wheat breeding. RESULTS As a result, variation coefficients of 50% and 47% for PHS in 629 wheat varieties, respectively, in 2020-2021 and 2021-2022 indicated large phenotypic variation, in particular, 38 white grain varieties appeared at least medium resistance, such as Baipimai, Fengchan 3, and Jimai 20. In GWAS, 22 significant QTNs, with the sizes of 0.06% ~ 38.11%, for PHS resistance were stably identified by multiple multi-locus methods in two environments, e.g., AX-95124645 (chr3D:571.35Mb), with the sizes of 36.390% and 45.850% in 2020-2021 and 2021-2022, respectively, was detected by several multi-locus methods in two environments. As compared with previous studies, the AX-95124645 was used to develop Kompetitive Allele-Specific PCR marker QSS.TAF9-3D (chr3D:569.17Mb~573.55Mb) for the first time, especially, it is available in white-grain wheat varieties. Around this locus, nine genes were significantly differentially expressed, and two of them (TraesCS3D01G466100 and TraesCS3D01G468500) were found by GO annotation to be related to PHS resistance and determined as candidate genes. DISCUSSION The QTN and two new candidate genes related to PHS resistance were identified in this study. The QTN can be used to effectively identify the PHS resistance materials, especially, all the white-grained varieties with QSS.TAF9-3D-TT haplotype are resistant to spike sprouting. Thus, this study provides candidate genes, materials, and methodological basis for breeding wheat PHS resistance in the future.
Collapse
Affiliation(s)
- Cheng Kou
- College of Agronomy, Northwest A&F University, Xianyang, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - ChaoJun Peng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - HaiBin Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - Lin Hu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - WeiGang Xu
- College of Agronomy, Northwest A&F University, Xianyang, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Jiang H, Fang Y, Yan D, Liu ST, Wei J, Guo FL, Wu XT, Cao H, Yin CB, Lu F, Gao LF, Liu YX. Genome-wide association study reveals a NAC transcription factor TaNAC074 linked to pre-harvest sprouting tolerance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3265-3276. [PMID: 35882642 DOI: 10.1007/s00122-022-04184-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Twelve QTL associated with pre-harvest sprouting tolerance were identified using association analysis in wheat. Two markers were validated and a candidate gene TaNAC074 for Qgpf.cas-3B.2 was verified using Agrobacterium-mediated transformation. Pre-harvest sprouting (PHS) is a considerable global threat to wheat yield and quality. Due to this threat, breeders must identify quantitative trait loci (QTL) and genes conferring PHS-tolerance (PHST) to reduce the negative effects of PHS caused by low seed dormancy. In this study, we evaluated a panel of 302 diverse wheat genotypes for PHST in four environments and genotyped the panel with a high-density wheat 660 K SNP array. By using a genome-wide association study (GWAS), we identified 12 stable loci significantly associated with PHST (P < 0.0001), explaining 3.34 - 9.88% of the phenotypic variances. Seven of these loci co-located with QTL and genes reported previously. Five loci (Qgpf.cas-3B.2, Qgpf.cas-3B.3, Qgpf.cas-3B.4, Qgpf.cas-7B.2, and Qgpf.cas-7B.3), located in genomic regions with no known PHST QTL or genes, are likely to be new QTL conferring PHST. Additionally, two molecular markers were developed for Qgpf.cas-3A and Qgpf.cas-7B.3, and validated using a different set of 233 wheat accessions. Finally, the PHST-related function of candidate gene TaNAC074 for Qgpf.cas-3B.2 was confirmed by CAPS (cleaved amplified polymorphic sequences) marker association analysis in 233 wheat accessions and by expression and phenotypic analysis of transgenic wheat. Overexpression of TaNAC074 significantly reduced seed dormancy in wheat. This study contributes to broaden the genetic basis and molecular marker-assisted breeding of PHST.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yu Fang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Yan
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Si-Tong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei-Long Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Ting Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chang-Bin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Feng Gao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Wang Q, Yan N, Chen H, Li S, Hu H, Lin Y, Shi H, Zhou K, Jiang X, Yu S, Li C, Chen G, Yang Z, Liu Y. Genome-Wide Association Study of Kernel Traits in Aegilops tauschii. Front Genet 2021; 12:651785. [PMID: 34122506 PMCID: PMC8194309 DOI: 10.3389/fgene.2021.651785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Aegilops tauschii is the diploid progenitor of the D subgenome of hexaploid wheat (Triticum aestivum L.). Here, the phenotypic data of kernel length (KL), kernel width (KW), kernel volume (KV), kernel surface area (KSA), kernel width to length ratio (KWL), and hundred-kernel weight (HKW) for 223 A. tauschii accessions were gathered across three continuous years. Based on population structure analysis, 223 A. tauschii were divided into two subpopulations, namely T-group (mainly included A. tauschii ssp. tauschii accessions) and S-group (mainly included A. tauschii ssp. strangulata). Classifications based on cluster analysis were highly consistent with the population structure results. Meanwhile, the extent of linkage disequilibrium decay distance (r2 = 0.5) was about 110 kb and 290 kb for T-group and S-group, respectively. Furthermore, a genome-wide association analysis was performed on these kernel traits using 6,723 single nucleotide polymorphism (SNP) markers. Sixty-six significant markers, distributed on all seven chromosomes, were identified using a mixed linear model explaining 4.82–13.36% of the phenotypic variations. Among them, 15, 28, 22, 14, 21, and 13 SNPs were identified for KL, KW, KV, KSA, KWL, and HKW, respectively. Moreover, six candidate genes that may control kernel traits were identified (AET2Gv20774800, AET4Gv20799000, AET5Gv20005900, AET5Gv20084100, AET7Gv20644900, and AET5Gv21111700). The transfer of beneficial genes from A. tauschii to wheat using marker-assisted selection will broaden the wheat D subgenome improve the efficiency of breeding.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ning Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Sirui Li
- Chengdu Foreign Language School, Chengdu, China
| | - Haiyan Hu
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haoran Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojun Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shifan Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zisong Yang
- College of Resources and Environment, Aba Teachers University, Wenchuan, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Lin Y, Zhou K, Hu H, Jiang X, Yu S, Wang Q, Li C, Ma J, Chen G, Yang Z, Liu Y. Multi-Locus Genome-Wide Association Study of Four Yield-Related Traits in Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2021; 12:665122. [PMID: 34484253 PMCID: PMC8415402 DOI: 10.3389/fpls.2021.665122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/20/2021] [Indexed: 05/13/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Here, four yield-related traits, namely, spike length, spikelets number, tillers number, and thousand-kernel weight, were evaluated in 272 Chinese wheat landraces in multiple environments. Five multi-locus genome-wide association studies (FASTmrEMMA, ISIS EN-BLASSO, mrMLM, pKWmEB, and pLARmEB) were performed using 172,711 single-nucleotide polymorphisms (SNPs) to identify yield-related quantitative trait loci (QTL). A total of 27 robust QTL were identified by more than three models. Nine of these QTL were consistent with those in previous studies. The remaining 18 QTL may be novel. We identified a major QTL, QTkw.sicau-4B, with up to 18.78% of phenotypic variation explained. The developed kompetitive allele-specific polymerase chain reaction marker for QTkw.sicau-4B was validated in two recombinant inbred line populations with an average phenotypic difference of 16.07%. After combined homologous function annotation and expression analysis, TraesCS4B01G272300 was the most likely candidate gene for QTkw.sicau-4B. Our findings provide new insights into the genetic basis of yield-related traits and offer valuable QTL to breed wheat cultivars via marker-assisted selection.
Collapse
Affiliation(s)
- Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiyan Hu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojun Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shifan Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zisong Yang
- College of Resources and Environment, Aba Teachers University, Wenchuan, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yaxi Liu, , orcid.org/0000-0001-6814-7218
| |
Collapse
|
6
|
Kiseleva AA, Leonova IN, Pshenichnikova TA, Salina EA. Dissection of novel candidate genes for grain texture in Russian wheat varieties. PLANT MOLECULAR BIOLOGY 2020; 104:219-233. [PMID: 32617826 DOI: 10.1007/s11103-020-01025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Antonina A Kiseleva
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090.
| | - Irina N Leonova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Tatyana A Pshenichnikova
- The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| | - Elena A Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, Russia, 630090
| |
Collapse
|
7
|
Ma J, Lin Y, Tang S, Duan S, Wang Q, Wu F, Li C, Jiang X, Zhou K, Liu Y. A Genome-Wide Association Study of Coleoptile Length in Different Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2020; 11:677. [PMID: 32582239 PMCID: PMC7287122 DOI: 10.3389/fpls.2020.00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 05/26/2023]
Abstract
From the perspective of wheat yield improvement, the coleoptile is vital for successful crop establishment, and long coleoptile lengths (CLs) are preferred in wheat-growing regions where deep planting is practiced. To determine the genetic basis of CL, we performed a genome-wide association study on a set of 707 Chinese wheat landraces using 18,594 single-nucleotide polymorphisms and 38,678 diversity array technology sequencing markers. We accordingly detected a total of 29 significant markers [-log10 (P) > 4.76] distributed on chromosomes 2B, 2D, 3A, 4A, 5A, 6A, 6B, 6D, and 7B. Based on linkage disequilibrium decay distance, we identified a total of 17 quantitative trait loci associated with CL, among which QCl.sicau-6B.2, located at 508.17-509.26 Mb on chromosome 6B, was recognized as a novel major locus. We subsequently developed a high-resolution melt marker for QCl.sicau-6B.2, which was validated in an F 2 : 3 population. Our findings provide important insights into the genetic mechanisms underlying coleoptile growth and could be applied to marker-assisted wheat selection.
Collapse
Affiliation(s)
- Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Si Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuonan Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qing Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangkun Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
8
|
Astorkia M, Hernandez M, Bocs S, Lopez de Armentia E, Herran A, Ponce K, León O, Morales S, Quezada N, Orellana F, Wendra F, Sembiring Z, Asmono D, Ritter E. Association Mapping Between Candidate Gene SNP and Production and Oil Quality Traits in Interspecific Oil Palm Hybrids. PLANTS 2019; 8:plants8100377. [PMID: 31561627 PMCID: PMC6843369 DOI: 10.3390/plants8100377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/07/2023]
Abstract
Oil palm production is gaining importance in Central and South America. However, the main species Elaeis guineensis (Eg) is suffering severely from bud rod disease, restricting the potential cultivation areas. Therefore, breeding companies have started to work with interspecific Elaeis oleifera × Eg (Eo × Eg) hybrids which are tolerant to this disease. We performed association studies between candidate gene (CG) single nucleotide polymorphisms (SNP) and six production and 19 oil quality traits in 198 accessions of interspecific oil palm hybrids from five different origins. For this purpose, barcoded amplicons of initially 167 CG were produced from each genotype and sequenced with Ion Torrent. After sequence cleaning 115 SNP remained targeting 62 CG. The influence of the origins on the different traits was analyzed and a genetic diversity study was performed. Two generalized linear models (GLM) with principle component analysis (PCA) or structure (Q) matrixes as covariates and two mixed linear models (MLM) which included in addition a Kinship (K) matrix were applied for association mapping using GAPIT. False discovery rate (FDR) multiple testing corrections were applied in order to avoid Type I errors. However, with FDR adjusted p values no significant associations between SNP and traits were detected. If using unadjusted p values below 0.05, seven of the studied CG showed potential associations with production traits, while 23 CG may influence different quality traits. Under these conditions the current approach and the detected candidate genes could be exploited for selecting genotypes with superior CG alleles in Marker Assisted Selection systems.
Collapse
Affiliation(s)
- Maider Astorkia
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
- Correspondence:
| | - Mónica Hernandez
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, CIRAD, Univ Montpellier, INRA, Montpellier SupAgro, F-34398 Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRA, IRD, F-34398 Montpellier, France
| | - Emma Lopez de Armentia
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
| | - Ana Herran
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
| | - Kevin Ponce
- La Fabril SA, km 5.5 via Manta–Montecristi, Avenida 113, 130902 Manta, Ecuador; (K.P.); (S.M.); (N.Q.)
| | - Olga León
- Energy & Palma SA, Av. Atahualpa E3-49 y Juan Gonzales, Ed. Fundación Pérez Pallarez, Officina 4ª, Quito 170507, Ecuador; (O.L.); (F.O.)
| | - Shone Morales
- La Fabril SA, km 5.5 via Manta–Montecristi, Avenida 113, 130902 Manta, Ecuador; (K.P.); (S.M.); (N.Q.)
| | - Nathalie Quezada
- La Fabril SA, km 5.5 via Manta–Montecristi, Avenida 113, 130902 Manta, Ecuador; (K.P.); (S.M.); (N.Q.)
| | - Francisco Orellana
- Energy & Palma SA, Av. Atahualpa E3-49 y Juan Gonzales, Ed. Fundación Pérez Pallarez, Officina 4ª, Quito 170507, Ecuador; (O.L.); (F.O.)
| | - Fahmi Wendra
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788 Palembang 30127, Indonesia; (F.W.); (Z.S.); (D.A.)
| | - Zulhermana Sembiring
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788 Palembang 30127, Indonesia; (F.W.); (Z.S.); (D.A.)
| | - Dwi Asmono
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788 Palembang 30127, Indonesia; (F.W.); (Z.S.); (D.A.)
| | - Enrique Ritter
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
| |
Collapse
|
9
|
Vetch JM, Stougaard RN, Martin JM, Giroux MJ. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:180-185. [PMID: 30824050 DOI: 10.1016/j.plantsci.2019.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 05/06/2023]
Abstract
Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) is an important phenomenon that results in weather dependent reductions in grain yield and quality across the globe. Due to the large annual losses, breeding PHS resistant varieties is of great importance. Many quantitative trait loci have been associated with PHS and a number of specific genes have been proven to impact PHS. TaPHS1, TaMKK3, Tamyb10, and TaVp1 have been shown to have a large impact on PHS susceptibility while many other genes such as TaSdr, TaQSd, and TaDOG1 have been shown to account for smaller, but significant, proportions of variation. These advances in understanding the genetics behind PHS are making molecular selection and loci stacking viable methods for affecting this quantitative trait. The current review article serves to provide a brief synthesis of recent advances regarding PHS, as well as provide unique insight into the genetic mechanisms governing PHS in bread wheat.
Collapse
Affiliation(s)
- Justin M Vetch
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Robert N Stougaard
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA; College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - John M Martin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Michael J Giroux
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA.
| |
Collapse
|
10
|
Yao F, Zhang X, Ye X, Li J, Long L, Yu C, Li J, Wang Y, Wu Y, Wang J, Jiang Q, Li W, Ma J, Wei Y, Zheng Y, Chen G. Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genet 2019; 20:38. [PMID: 30914040 PMCID: PMC6434810 DOI: 10.1186/s12863-019-0736-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/03/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Stripe rust is a serious fungal disease of wheat (Triticum aestivum L.) caused by Puccinia striiformis f. sp. tritici (Pst), which results in yield reduction and decreased grain quality. Breeding for genetic resistance to stripe rust is the most cost-effective method to control the disease. In the present study, a genome-wide association study (GWAS) was conducted to identify markers linked to stripe rust resistance genes (or loci) in 93 Northern Chinese wheat landraces, using Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) molecular marker technology based on phenotypic data from two field locations over two growing seasons in China. RESULTS Seventeen accessions were verified to display stable and high levels of adult plant resistance (APR) to stripe rust via multi-environment field assessments. Significant correlations among environments and high heritability were observed for stripe rust infection type (IT) and disease severity (DS). Using mixed linear models (MLM) for the GWAS, a total of 32 significantly associated loci (P < 0.001) were detected. In combination with the linkage disequilibrium (LD) decay distance (6.4 cM), 25 quantitative trait loci (QTL) were identified. Based on the integrated map of previously reported genes and QTL, six QTL located on chromosomes 4A, 6A and 7D were mapped far from resistance regions identified previously, and represent potentially novel stripe rust resistance loci at the adult plant stage. CONCLUSIONS The present findings demonstrated that identification of genes or loci linked to significant markers in wheat by GWAS is feasible. Seventeen elite accessions conferred with stable and high resistance to stripe rust, and six putative newly detected APR loci were identified among the 93 Northern Chinese wheat landraces. The results illustrate the potential for acceleration of molecular breeding of wheat, and also provide novel sources of stripe rust resistance with potential utility in the breeding of improved wheat cultivars.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xuemei Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| |
Collapse
|
11
|
Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by both genetic and environmental factors and the interaction of these factors. Breeding varieties with high PHS resistance have important implications for reducing yield loss and improving grain quality. The rapid advancements in the wheat genomic database along with transcriptomic and proteomic technologies have broadened our knowledge for understanding the regulatory mechanism of PHS resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy, α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory mechanism of PHS resistance.
Collapse
|