1
|
Li JY, Yang C, Tian YY, Liu JX. Regulation of Chloroplast Development and Function at Adverse Temperatures in Plants. PLANT & CELL PHYSIOLOGY 2022; 63:580-591. [PMID: 35141744 DOI: 10.1093/pcp/pcac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The chloroplast is essential for photosynthesis, plant growth and development. As semiautonomous organelles, the biogenesis and development of chloroplasts need to be well-regulated during plant growth and stress responses. Low or high ambient temperatures are adverse environmental stresses that affect crop growth and productivity. As sessile organisms, plants regulate the development and function of chloroplasts in a fluctuating temperature environment to maintain normal photosynthesis. This review focuses on the molecular mechanisms and regulatory factors required for chloroplast biogenesis and development under cold or heat stress conditions and highlights the importance of chloroplast gene transcription, RNA metabolism, ribosome function and protein homeostasis essential for chloroplast development under adverse temperature conditions.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Ying-Ying Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
2
|
Sahu A, Das A, Saikia K, Barah P. Temperature differentially modulates the transcriptome response in Oryza sativa to Xanthomonas oryzae pv. oryzae infection. Genomics 2020; 112:4842-4852. [PMID: 32896629 DOI: 10.1016/j.ygeno.2020.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 08/21/2020] [Indexed: 01/17/2023]
Abstract
Bacterial blight is caused by the pathogen Xanthomonas oryzae pv. oryzae (Xoo). Genome scale integrative analysis on the interaction of high and low temperatures on the molecular response signature in rice during the Xoo infection has not been conducted yet. We have analysed a unique RNA-Seq dataset generated on the susceptible rice variety IR24 under combined exposure of Xoo with low 29/21 °C (day/night) and high 35/31 °C (day/night) temperatures. Differentially regulated key genes and pathways in rice plants during both the stress conditions were identified. Differential dynamics of the regulatory network topology showed that WRKY and ERF families of transcription factors play a crucial role during signal crosstalk events in rice plants while responding to combined exposure of Xoo with low temperature vs. Xoo with high temperatures. Our study suggests that upon onset of high temperature, rice plants tend to switch its focus from defence response towards growth and reproduction.
Collapse
Affiliation(s)
- Ankur Sahu
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Akash Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Katherine Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India.
| |
Collapse
|
3
|
Witte CP, Herde M. Nucleotide Metabolism in Plants. PLANT PHYSIOLOGY 2020; 182:63-78. [PMID: 31641078 PMCID: PMC6945853 DOI: 10.1104/pp.19.00955] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 05/14/2023]
Abstract
Nucleotide metabolism is an essential function in plants.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
4
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Dong Q, Zhang YX, Zhou Q, Liu QE, Chen DB, Wang H, Cheng SH, Cao LY, Shen XH. UMP Kinase Regulates Chloroplast Development and Cold Response in Rice. Int J Mol Sci 2019; 20:E2107. [PMID: 31035645 PMCID: PMC6539431 DOI: 10.3390/ijms20092107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
Pyrimidine nucleotides are important metabolites that are building blocks of nucleic acids, which participate in various aspects of plant development. Only a few genes involved in pyrimidine metabolism have been identified in rice and the majority of their functions remain unclear. In this study, we used a map-based cloning strategy to isolate a UMPK gene in rice, encoding the UMP kinase that phosphorylates UMP to form UDP, from a recessive mutant with pale-green leaves. In the mutant, UDP content always decreased, while UTP content fluctuated with the development of leaves. Mutation of UMPK reduced chlorophyll contents and decreased photosynthetic capacity. In the mutant, transcription of plastid-encoded RNA polymerase-dependent genes, including psaA, psbB, psbC and petB, was significantly reduced, whereas transcription of nuclear-encoded RNA polymerase-dependent genes, including rpoA, rpoB, rpoC1, and rpl23, was elevated. The expression of UMPK was significantly induced by various stresses, including cold, heat, and drought. Increased sensitivity to cold stress was observed in the mutant, based on the survival rate and malondialdehyde content. High accumulation of hydrogen peroxide was found in the mutant, which was enhanced by cold treatment. Our results indicate that the UMP kinase gene plays important roles in regulating chloroplast development and stress response in rice.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ying-Xin Zhang
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Quan Zhou
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Qun-En Liu
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Dai-Bo Chen
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Hong Wang
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shi-Hua Cheng
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Li-Yong Cao
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xi-Hong Shen
- State Key Laboratory of Rice Biology and Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
6
|
Schmid LM, Ohler L, Möhlmann T, Brachmann A, Muiño JM, Leister D, Meurer J, Manavski N. PUMPKIN, the Sole Plastid UMP Kinase, Associates with Group II Introns and Alters Their Metabolism. PLANT PHYSIOLOGY 2019; 179:248-264. [PMID: 30409856 PMCID: PMC6324238 DOI: 10.1104/pp.18.00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 05/07/2023]
Abstract
The chloroplast hosts photosynthesis and a variety of metabolic pathways that are essential for plant viability and acclimation processes. In this study, we show that the sole plastid UMP kinase (PUMPKIN) in Arabidopsis (Arabidopsis thaliana) associates specifically with the introns of the plastid transcripts trnG-UCC, trnV-UAC, petB, petD, and ndhA in vivo, as revealed by RNA immunoprecipitation coupled with deep sequencing (RIP-Seq); and that PUMPKIN can bind RNA efficiently in vitro. Analyses of target transcripts showed that PUMPKIN affects their metabolism. Null alleles and knockdowns of pumpkin were viable but clearly affected in growth, plastid translation, and photosynthetic performance. In pumpkin mutants, the levels of many plastid transcripts were reduced, while the amounts of others were increased, as revealed by RNA-Seq analysis. PUMPKIN is a homomultimeric, plastid-localized protein that forms in vivo RNA-containing megadalton-sized complexes and catalyzes the ATP-dependent conversion of UMP to UDP in vitro with properties characteristic of known essential eubacterial UMP kinases. A moonlighting function of PUMPKIN combining RNA and pyrimidine metabolism is discussed.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa Ohler
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin Schrödinger Street, 67653 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin Schrödinger Street, 67653 Kaiserslautern, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jose M Muiño
- Humboldt University, Faculty of Life Science, Philipp Street 13, 10115 Berlin, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|