1
|
Vela J, Mora P, Montiel EE, Rico-Porras JM, Sanllorente O, Amoasii D, Lorite P, Palomeque T. Exploring horizontal transfer of mariner transposable elements among ants and aphids. Gene 2024; 899:148144. [PMID: 38195050 DOI: 10.1016/j.gene.2024.148144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Aphids and ants are mutualistic species with a close space-time relationship, which may facilitate the occurrence of horizontal transfer events between these insect groups. Myrmar-like mariner elements were previously isolated from two ant (Myrmica ruginodis and Tapinoma ibericum) and two aphid species (Aphis fabae and Aphis hederae). The aim of this work is to determine the presence of Myrmar-like mariner elements in new ant and aphid species, as well as to analyze the likelihood of horizontal transfer events between these taxa. To accomplish this, the Myrmar-like element has been isolated from five aphid species and six ant species. Among these new analyzed species, full-length Myrmar-like mariner elements with very high sequence similarity have been isolated from the aphids Aphis nerii, Aphis spiraecola, Brachycaudus cardui, and Rhopalosiphum maidis as well as from the ants Lasius grandis and Lasius niger, even though aphids and ants belong to two insect orders (Hemiptera and Hymenoptera) that have evolved independently for at least 300 million-years. Both Lasius species establish frequent mutualistic relationships with multiple aphid species, including A. nerii, A. spiraecola, and B. cardui. The study of the putative protein encoded by them and the phylogenetic analysis suggests that they could be active transposons shared by aphids and ants through horizontal transfer events. Additionally, mariner elements with internal deletion were found in several aphids and one ant species, showing a high degree of sequence similarity among them. The characteristics of these elements with internal deletion suggest a complex origin involving various evolutionary processes, possibly including also horizontal transfer events. Myrmar-like elements have also been isolated from the other ant species, although without similarity with the aphid mariner sequences. Myrmar-like elements are also present in phylogenetically distant insect species, as well as in one crustacean species. The phylogenetic study carried out with all Myrmar-like elements suggests the probable occurrence of horizontal transfer events.
Collapse
Affiliation(s)
- Jesús Vela
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Pablo Mora
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Eugenia E Montiel
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - José M Rico-Porras
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Olivia Sanllorente
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Daniela Amoasii
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| | - Teresa Palomeque
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071 Jaén, Spain.
| |
Collapse
|
2
|
Comprehensive mapping of transposable elements reveals distinct patterns of element accumulation on chromosomes of wild beetles. Chromosome Res 2021; 29:203-218. [PMID: 33638119 DOI: 10.1007/s10577-021-09655-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Over the past decades, transposable elements (TEs) have been shown to play important roles shaping genome architecture and as major promoters of genetic diversification and evolution of species. Likewise, TE accumulation is tightly linked to heterochromatinization and centromeric dynamics, which can ultimately contribute to speciation. Despite growing efforts to characterize the repeat landscape of species, few studies have focused on mapping the accumulation profiles of TEs on chromosomes. The few studies on repeat accumulation profiles in populations are biased towards model organisms and inbred lineages. Here, we present a cytomolecular analysis of six mobilome-extracted elements on multiple individuals from a population of a species of wild-captured beetle, Dichotomius schiffleri, aiming to investigate patterns of TE accumulation and uncover possible trends of their chromosomal distribution. Compiling TE distribution data from several individuals allowed us to make generalizations regarding variation of TEs at the gross chromosome level unlikely to have been achieved using a single individual, or even from a whole-genome assembly. We found that (1) transposable elements have differential accumulation profiles on D. schiffleri chromosomes and (2) specific chromosomes have their own TE accumulation landscape. The remarkable variability of their genomic distribution suggests that TEs are likely candidates to contribute to the evolution of heterochromatin architecture and promote high genetic variability in species that otherwise display conserved karyotypes. Therefore, this variation likely contributed to genome evolution and species diversification in Dichotomius.
Collapse
|
3
|
Amorim IC, Melo ES, Moura RC, Wallau GL. Diverse mobilome of Dichotomius (Luederwaldtinia) schiffleri (Coleoptera: Scarabaeidae) reveals long-range horizontal transfer events of DNA transposons. Mol Genet Genomics 2020; 295:1339-1353. [PMID: 32601732 DOI: 10.1007/s00438-020-01703-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that are able to move from one genomic location to another. These selfish elements are known as genomic parasites, since they hijack the host molecular machinery to generate new copies of themselves. The mobilization of TEs can be seen as a natural mutagen because new TE copies can insert into different loci and impact host genomic structure through different mechanisms. Although our knowledge about TEs is improving with new genomes available, there is still very limited data about the mobilome of species from the Coleoptera order, the most diverse order of insects, including species from the Scarabaeidae family. Therefore, the main goal of this study was to characterize the mobilome of D. (Luederwaldtinia) schiffleri, based on low-coverage genome sequencing, and reconstruct their evolutionary history. We used a combination of four different approaches for TE characterization and maximum likelihood phylogenetic analysis to study their evolution. We found a large and diverse mobilome composed of 38 TE superfamilies, 20 DNA transposon and 18 retrotransposons, accounting for 21% of the genome. Moreover, we found a number of incongruences between the TE and host phylogenetic trees in three DNA transposon TE superfamilies, which represents five TE families, suggesting possible horizontal transfer events between highly divergent taxa. In summary, we found an abundant and diverse mobilome and a number of horizontal transfer events that have shaped the evolutionary history of this species.
Collapse
Affiliation(s)
- I C Amorim
- Laboratório de Biodiversidade E Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310- Santo Amaro, Recife, PE, CEP: 50100-130, Brasil
| | - E S Melo
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil
| | - R C Moura
- Laboratório de Biodiversidade E Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310- Santo Amaro, Recife, PE, CEP: 50100-130, Brasil.
| | - G L Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil.
| |
Collapse
|